Add YOLO-Seg

This commit is contained in:
Marcos Luciano
2023-09-07 00:25:56 -03:00
parent 0f4377f540
commit 1a9df997a4
10 changed files with 28 additions and 2 deletions

View File

@@ -4,6 +4,7 @@ NVIDIA DeepStream SDK 6.3 / 6.2 / 6.1.1 / 6.1 / 6.0.1 / 6.0 / 5.1 configuration
--------------------------------------------------------------------------------------------------
### YOLO-Pose: https://github.com/marcoslucianops/DeepStream-Yolo-Pose
### YOLO-Seg: https://github.com/marcoslucianops/DeepStream-Yolo-Seg
--------------------------------------------------------------------------------------------------
### Important: please export the ONNX model with the new export file, generate the TensorRT engine again with the updated files, and use the new config_infer_primary file according to your model
--------------------------------------------------------------------------------------------------
@@ -29,13 +30,14 @@ NVIDIA DeepStream SDK 6.3 / 6.2 / 6.1.1 / 6.1 / 6.0.1 / 6.0 / 5.1 configuration
* INT8 calibration (PTQ) for Darknet and ONNX exported models
* New output structure (fix wrong output on DeepStream < 6.2) - it need to export the ONNX model with the new export file, generate the TensorRT engine again with the updated files, and use the new config_infer_primary file according to your model
* **YOLO-Pose: https://github.com/marcoslucianops/DeepStream-Yolo-Pose**
* **YOLO-Seg: https://github.com/marcoslucianops/DeepStream-Yolo-Seg**
##
### Getting started
* [Requirements](#requirements)
* [Suported models](#supported-models)
* [Supported models](#supported-models)
* [Benchmarks](docs/benchmarks.md)
* [dGPU installation](docs/dGPUInstalation.md)
* [Basic usage](#basic-usage)
@@ -156,7 +158,7 @@ NVIDIA DeepStream SDK 6.3 / 6.2 / 6.1.1 / 6.1 / 6.0.1 / 6.0 / 5.1 configuration
##
### Suported models
### Supported models
* [Darknet](https://github.com/AlexeyAB/darknet)
* [MobileNet-YOLO](https://github.com/dog-qiuqiu/MobileNet-Yolo)

View File

@@ -166,6 +166,7 @@ parse-bbox-func-name=NvDsInferParseYoloE
**NOTE**: The **DAMO-YOLO** do not resize the input with padding. To get better accuracy, use
```
[property]
...
maintain-aspect-ratio=0
...
@@ -174,6 +175,7 @@ maintain-aspect-ratio=0
**NOTE**: By default, the dynamic batch-size is set. To use implicit batch-size, uncomment the line
```
[property]
...
force-implicit-batch-dim=1
...

View File

@@ -145,6 +145,7 @@ parse-bbox-func-name=NvDsInferParseYoloE
**NOTE**: The **PP-YOLOE+ and PP-YOLOE legacy** do not resize the input with padding. To get better accuracy, use
```
[property]
...
maintain-aspect-ratio=0
...
@@ -153,6 +154,7 @@ maintain-aspect-ratio=0
**NOTE**: The **PP-YOLOE+** uses zero mean normalization on the image preprocess. It is important to change the `net-scale-factor` according to the trained values.
```
[property]
...
net-scale-factor=0.0039215697906911373
...
@@ -163,6 +165,7 @@ net-scale-factor=0.0039215697906911373
Default: `mean = 0.485, 0.456, 0.406` and `std = 0.229, 0.224, 0.225`
```
[property]
...
net-scale-factor=0.0173520735727919486
offsets=123.675;116.28;103.53
@@ -172,6 +175,7 @@ offsets=123.675;116.28;103.53
**NOTE**: By default, the dynamic batch-size is set. To use implicit batch-size, uncomment the line
```
[property]
...
force-implicit-batch-dim=1
...

View File

@@ -201,6 +201,7 @@ parse-bbox-func-name=NvDsInferParseYoloE
**NOTE**: The **YOLO-NAS** resizes the input with left/top padding. To get better accuracy, use
```
[property]
...
maintain-aspect-ratio=1
symmetric-padding=0
@@ -210,6 +211,7 @@ symmetric-padding=0
**NOTE**: The **pre-trained YOLO-NAS** uses zero mean normalization on the image preprocess. It is important to change the `net-scale-factor` according to the trained values.
```
[property]
...
net-scale-factor=0.0039215697906911373
...
@@ -218,6 +220,7 @@ net-scale-factor=0.0039215697906911373
**NOTE**: The **custom YOLO-NAS** uses no normalization on the image preprocess. It is important to change the `net-scale-factor` according to the trained values.
```
[property]
...
net-scale-factor=1
...
@@ -226,6 +229,7 @@ net-scale-factor=1
**NOTE**: By default, the dynamic batch-size is set. To use implicit batch-size, uncomment the line
```
[property]
...
force-implicit-batch-dim=1
...

View File

@@ -184,6 +184,7 @@ parse-bbox-func-name=NvDsInferParseYolo
**NOTE**: The **YOLOR** resizes the input with center padding. To get better accuracy, use
```
[property]
...
maintain-aspect-ratio=1
symmetric-padding=1
@@ -193,6 +194,7 @@ symmetric-padding=1
**NOTE**: By default, the dynamic batch-size is set. To use implicit batch-size, uncomment the line
```
[property]
...
force-implicit-batch-dim=1
...

View File

@@ -150,6 +150,7 @@ parse-bbox-func-name=NvDsInferParseYolo
**NOTE**: The **YOLOX and YOLOX legacy** resize the input with left/top padding. To get better accuracy, use
```
[property]
...
maintain-aspect-ratio=1
symmetric-padding=0
@@ -159,6 +160,7 @@ symmetric-padding=0
**NOTE**: The **YOLOX** uses no normalization on the image preprocess. It is important to change the `net-scale-factor` according to the trained values.
```
[property]
...
net-scale-factor=1
...
@@ -169,6 +171,7 @@ net-scale-factor=1
Default: `mean = 0.485, 0.456, 0.406` and `std = 0.229, 0.224, 0.225`
```
[property]
...
net-scale-factor=0.0173520735727919486
offsets=123.675;116.28;103.53
@@ -178,6 +181,7 @@ offsets=123.675;116.28;103.53
**NOTE**: By default, the dynamic batch-size is set. To use implicit batch-size, uncomment the line
```
[property]
...
force-implicit-batch-dim=1
...

View File

@@ -176,6 +176,7 @@ parse-bbox-func-name=NvDsInferParseYolo
**NOTE**: The **YOLOv5** resizes the input with center padding. To get better accuracy, use
```
[property]
...
maintain-aspect-ratio=1
symmetric-padding=1
@@ -185,6 +186,7 @@ symmetric-padding=1
**NOTE**: By default, the dynamic batch-size is set. To use implicit batch-size, uncomment the line
```
[property]
...
force-implicit-batch-dim=1
...

View File

@@ -176,6 +176,7 @@ parse-bbox-func-name=NvDsInferParseYolo
**NOTE**: The **YOLOv6** resizes the input with center padding. To get better accuracy, use
```
[property]
...
maintain-aspect-ratio=1
symmetric-padding=1
@@ -185,6 +186,7 @@ symmetric-padding=1
**NOTE**: By default, the dynamic batch-size is set. To use implicit batch-size, uncomment the line
```
[property]
...
force-implicit-batch-dim=1
...

View File

@@ -178,6 +178,7 @@ parse-bbox-func-name=NvDsInferParseYolo
**NOTE**: The **YOLOv7** resizes the input with center padding. To get better accuracy, use
```
[property]
...
maintain-aspect-ratio=1
symmetric-padding=1
@@ -187,6 +188,7 @@ symmetric-padding=1
**NOTE**: By default, the dynamic batch-size is set. To use implicit batch-size, uncomment the line
```
[property]
...
force-implicit-batch-dim=1
...

View File

@@ -169,6 +169,7 @@ parse-bbox-func-name=NvDsInferParseYolo
**NOTE**: The **YOLOv8** resizes the input with center padding. To get better accuracy, use
```
[property]
...
maintain-aspect-ratio=1
symmetric-padding=1
@@ -178,6 +179,7 @@ symmetric-padding=1
**NOTE**: By default, the dynamic batch-size is set. To use implicit batch-size, uncomment the line
```
[property]
...
force-implicit-batch-dim=1
...