diff --git a/readme.md b/readme.md index 6761b2e..3491e9c 100644 --- a/readme.md +++ b/readme.md @@ -20,7 +20,7 @@ NVIDIA DeepStream SDK 6.0.1 configuration for YOLO models * Support for INT8 calibration * Support for non square models * Support for reorg, implicit and channel layers (YOLOR) -* YOLOv5 6.0 / 6.1 native support +* YOLOv5 4.0, 5.0, 6.0 and 6.1 native support * YOLOR native support * Models benchmarks (**outdated**) * **GPU YOLO Decoder (moved from CPU to GPU to get better performance)** [#138](https://github.com/marcoslucianops/DeepStream-Yolo/issues/138) @@ -75,7 +75,7 @@ NVIDIA DeepStream SDK 6.0.1 configuration for YOLO models ### Tested models * [Darknet YOLO](https://github.com/AlexeyAB/darknet) -* [YOLOv5 6.0 / 6.1](https://github.com/ultralytics/yolov5) +* [YOLOv5 4.0, 5.0, 6.0 and 6.1](https://github.com/ultralytics/yolov5) * [YOLOR](https://github.com/WongKinYiu/yolor) * [MobileNet-YOLO](https://github.com/dog-qiuqiu/MobileNet-Yolo) * [YOLO-Fastest](https://github.com/dog-qiuqiu/Yolo-Fastest) @@ -378,11 +378,13 @@ config-file=config_infer_primary_yoloV2.txt ### YOLOv5 usage +**NOTE**: Make sure to change the YOLOv5 repo version to your model version before conversion. + #### 1. Copy gen_wts_yoloV5.py from DeepStream-Yolo/utils to [ultralytics/yolov5](https://github.com/ultralytics/yolov5) folder #### 2. Open the ultralytics/yolov5 folder -#### 3. Download pt file from [ultralytics/yolov5](https://github.com/ultralytics/yolov5/releases/tag/v6.1) website (example for YOLOv5n) +#### 3. Download pt file from [ultralytics/yolov5](https://github.com/ultralytics/yolov5/releases/) website (example for YOLOv5n 6.1) ``` wget https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5n.pt