Update to YOLOv5 5.0

Updated files for YOLOv5 5.0
This commit is contained in:
Marcos Luciano
2021-05-03 20:22:42 -03:00
parent d0f0b66a1c
commit 170f9cac74
11 changed files with 284 additions and 395 deletions

105
YOLOv5.md
View File

@@ -1,9 +1,9 @@
# YOLOv5
NVIDIA DeepStream SDK 5.1 configuration for YOLOv5 models
NVIDIA DeepStream SDK 5.1 configuration for YOLOv5 5.0 models
Thanks [DanaHan](https://github.com/DanaHan/Yolov5-in-Deepstream-5.0), [wang-xinyu](https://github.com/wang-xinyu/tensorrtx) and [Ultralytics](https://github.com/ultralytics/yolov5)
Thanks [wang-xinyu](https://github.com/wang-xinyu/tensorrtx) and [Ultralytics](https://github.com/ultralytics/yolov5)
Supported version: YOLOv5 3.0/3.1
Supported version: YOLOv5 5.0
##
@@ -16,53 +16,15 @@ Supported version: YOLOv5 3.0/3.1
##
### Requirements
* Python3
```
sudo apt-get install python3 python3-dev python3-pip
pip3 install --upgrade pip
```
* [TensorRTX](https://github.com/wang-xinyu/tensorrtx/blob/master/tutorials/install.md)
* OpenCV Python
```
sudo apt-get install libopencv-dev
pip3 install opencv-python
```
* Matplotlib
```
pip3 install matplotlib
```
* [Ultralytics](https://github.com/ultralytics/yolov5/blob/master/requirements.txt)
* Matplotlib (for Jetson plataform)
```
sudo apt-get install python3-matplotlib
```
* Scipy
```
pip3 install scipy
```
* tqdm
```
pip3 install tqdm
```
* Pandas
```
pip3 install pandas
```
* seaborn
```
pip3 install seaborn
```
* PyTorch
```
pip3 install torch torchvision
```
* PyTorch (for Jetson plataform)
```
wget https://nvidia.box.com/shared/static/9eptse6jyly1ggt9axbja2yrmj6pbarc.whl -O torch-1.6.0-cp36-cp36m-linux_aarch64.whl
@@ -84,20 +46,13 @@ sudo python3 setup.py install
### Convert PyTorch model to wts file
1. Download repositories
```
git clone https://github.com/DanaHan/Yolov5-in-Deepstream-5.0.git yolov5converter
git clone https://github.com/wang-xinyu/tensorrtx.git
git clone https://github.com/ultralytics/yolov5.git
```
Note: checkout TensorRTX repo to 3.0/3.1 YOLOv5 version
2. Download latest YoloV5 (YOLOv5s, YOLOv5m, YOLOv5l or YOLOv5x) weights to yolov5 folder (example for YOLOv5s)
```
cd tensorrtx
git checkout '6d0f5cb'
```
2. Download latest YoloV5 (YOLOv5s, YOLOv5m, YOLOv5l or YOLOv5x) weights to yolov5/weights directory (example for YOLOv5s)
```
wget https://github.com/ultralytics/yolov5/releases/download/v3.1/yolov5s.pt -P yolov5/weights/
wget https://github.com/ultralytics/yolov5/releases/download/v5.0/yolov5s.pt -P yolov5/
```
3. Copy gen_wts.py file (from tensorrtx/yolov5 folder) to yolov5 (ultralytics) folder
@@ -108,36 +63,15 @@ cp tensorrtx/yolov5/gen_wts.py yolov5/gen_wts.py
4. Generate wts file
```
cd yolov5
python3 gen_wts.py
python3 gen_wts.py yolov5s.pt
```
yolov5s.wts file will be generated in yolov5 folder
<br />
Note: if you want to generate wts file to another YOLOv5 model (YOLOv5m, YOLOv5l or YOLOv5x), edit get_wts.py file changing yolov5s to your model name
```
model = torch.load('weights/yolov5s.pt', map_location=device)['model'].float() # load to FP32
model.to(device).eval()
f = open('yolov5s.wts', 'w')
```
##
### Convert wts file to TensorRT model
1. Replace yololayer files from tensorrtx/yolov5 folder to yololayer and hardswish files from yolov5converter
```
mv yolov5converter/yololayer.cu tensorrtx/yolov5/yololayer.cu
mv yolov5converter/yololayer.h tensorrtx/yolov5/yololayer.h
```
2. Move generated yolov5s.wts file to tensorrtx/yolov5 folder (example for YOLOv5s)
```
cp yolov5/yolov5s.wts tensorrtx/yolov5/yolov5s.wts
```
3. Build tensorrtx/yolov5
1. Build tensorrtx/yolov5
```
cd tensorrtx/yolov5
mkdir build
@@ -146,12 +80,17 @@ cmake ..
make
```
4. Convert to TensorRT model (yolov5s.engine file will be generated in tensorrtx/yolov5/build folder)
2. Move generated yolov5s.wts file to tensorrtx/yolov5 folder (example for YOLOv5s)
```
sudo ./yolov5 -s
cp yolov5/yolov5s.wts tensorrtx/yolov5/build/yolov5s.wts
```
5. Create a custom yolo folder and copy generated files (example for YOLOv5s)
3. Convert to TensorRT model (yolov5s.engine file will be generated in tensorrtx/yolov5/build folder)
```
sudo ./yolov5 -s yolov5s.wts yolov5s.engine s
```
4. Create a custom yolo folder and copy generated file (example for YOLOv5s)
```
mkdir /opt/nvidia/deepstream/deepstream-5.1/sources/yolo
cp yolov5s.engine /opt/nvidia/deepstream/deepstream-5.1/sources/yolo/yolov5s.engine
@@ -159,15 +98,13 @@ cp yolov5s.engine /opt/nvidia/deepstream/deepstream-5.1/sources/yolo/yolov5s.eng
<br />
Note: by default, yolov5 script generate model with batch size = 1, FP16 mode and s model.
Note: by default, yolov5 script generate model with batch size = 1 and FP16 mode.
```
#define USE_FP16 // comment out this if want to use FP32
#define USE_FP32 // set USE_INT8 or USE_FP16 or USE_FP32
#define DEVICE 0 // GPU id
#define NMS_THRESH 0.4
#define CONF_THRESH 0.5
#define BATCH_SIZE 1
#define NET s // s m l x
```
Edit yolov5.cpp file before compile if you want to change this parameters.
@@ -179,7 +116,7 @@ Edit yolov5.cpp file before compile if you want to change this parameters.
sudo chmod -R 777 /opt/nvidia/deepstream/deepstream-5.1/sources/
```
2. Donwload [my external/yolov5 folder](https://github.com/marcoslucianops/DeepStream-Yolo/tree/master/external/yolov5) and move files to created yolo folder
2. Donwload [my external/yolov5-5.0 folder](https://github.com/marcoslucianops/DeepStream-Yolo/tree/master/external/yolov5-5.0) and move files to created yolo folder
3. Compile lib
@@ -198,7 +135,7 @@ CUDA_VER=10.2 make -C nvdsinfer_custom_impl_Yolo
##
### Testing model
Use my edited [deepstream_app_config.txt](https://raw.githubusercontent.com/marcoslucianops/DeepStream-Yolo/master/external/yolov5/deepstream_app_config.txt) and [config_infer_primary.txt](https://raw.githubusercontent.com/marcoslucianops/DeepStream-Yolo/master/external/yolov5/config_infer_primary.txt) files available in [my external/yolov5 folder](https://github.com/marcoslucianops/DeepStream-Yolo/tree/master/external/yolov5)
Use my edited [deepstream_app_config.txt](https://raw.githubusercontent.com/marcoslucianops/DeepStream-Yolo/master/external/yolov5-5.0/deepstream_app_config.txt) and [config_infer_primary.txt](https://raw.githubusercontent.com/marcoslucianops/DeepStream-Yolo/master/external/yolov5-5.0/config_infer_primary.txt) files available in [my external/yolov5-5.0 folder](https://github.com/marcoslucianops/DeepStream-Yolo/tree/master/external/yolov5-5.0)
Run command
```

View File

@@ -0,0 +1,18 @@
#ifndef TRTX_CUDA_UTILS_H_
#define TRTX_CUDA_UTILS_H_
#include <cuda_runtime_api.h>
#ifndef CUDA_CHECK
#define CUDA_CHECK(callstr)\
{\
cudaError_t error_code = callstr;\
if (error_code != cudaSuccess) {\
std::cerr << "CUDA error " << error_code << " at " << __FILE__ << ":" << __LINE__;\
assert(0);\
}\
}
#endif // CUDA_CHECK
#endif // TRTX_CUDA_UTILS_H_

View File

@@ -1,33 +1,55 @@
#include <assert.h>
#include <vector>
#include <iostream>
#include "yololayer.h"
#include "utils.h"
#include "cuda_utils.h"
namespace Tn
{
template<typename T>
void write(char*& buffer, const T& val)
{
*reinterpret_cast<T*>(buffer) = val;
buffer += sizeof(T);
}
template<typename T>
void read(const char*& buffer, T& val)
{
val = *reinterpret_cast<const T*>(buffer);
buffer += sizeof(T);
}
}
using namespace Yolo;
namespace nvinfer1
{
YoloLayerPlugin::YoloLayerPlugin()
YoloLayerPlugin::YoloLayerPlugin(int classCount, int netWidth, int netHeight, int maxOut, const std::vector<Yolo::YoloKernel>& vYoloKernel)
{
mClassCount = CLASS_NUM;
mYoloKernel.clear();
mYoloKernel.push_back(yolo1);
mYoloKernel.push_back(yolo2);
mYoloKernel.push_back(yolo3);
mKernelCount = mYoloKernel.size();
mClassCount = classCount;
mYoloV5NetWidth = netWidth;
mYoloV5NetHeight = netHeight;
mMaxOutObject = maxOut;
mYoloKernel = vYoloKernel;
mKernelCount = vYoloKernel.size();
CUDA_CHECK(cudaMallocHost(&mAnchor, mKernelCount * sizeof(void*)));
size_t AnchorLen = sizeof(float)* CHECK_COUNT*2;
for(int ii = 0; ii < mKernelCount; ii ++)
size_t AnchorLen = sizeof(float)* CHECK_COUNT * 2;
for (int ii = 0; ii < mKernelCount; ii++)
{
CUDA_CHECK(cudaMalloc(&mAnchor[ii],AnchorLen));
CUDA_CHECK(cudaMalloc(&mAnchor[ii], AnchorLen));
const auto& yolo = mYoloKernel[ii];
CUDA_CHECK(cudaMemcpy(mAnchor[ii], yolo.anchors, AnchorLen, cudaMemcpyHostToDevice));
}
}
YoloLayerPlugin::~YoloLayerPlugin()
{
for (int ii = 0; ii < mKernelCount; ii++)
{
CUDA_CHECK(cudaFree(mAnchor[ii]));
}
CUDA_CHECK(cudaFreeHost(mAnchor));
}
// create the plugin at runtime from a byte stream
@@ -38,20 +60,21 @@ namespace nvinfer1
read(d, mClassCount);
read(d, mThreadCount);
read(d, mKernelCount);
read(d, mYoloV5NetWidth);
read(d, mYoloV5NetHeight);
read(d, mMaxOutObject);
mYoloKernel.resize(mKernelCount);
auto kernelSize = mKernelCount*sizeof(YoloKernel);
memcpy(mYoloKernel.data(),d,kernelSize);
auto kernelSize = mKernelCount * sizeof(YoloKernel);
memcpy(mYoloKernel.data(), d, kernelSize);
d += kernelSize;
CUDA_CHECK(cudaMallocHost(&mAnchor, mKernelCount * sizeof(void*)));
size_t AnchorLen = sizeof(float)* CHECK_COUNT*2;
for(int ii = 0; ii < mKernelCount; ii ++)
size_t AnchorLen = sizeof(float)* CHECK_COUNT * 2;
for (int ii = 0; ii < mKernelCount; ii++)
{
CUDA_CHECK(cudaMalloc(&mAnchor[ii],AnchorLen));
CUDA_CHECK(cudaMalloc(&mAnchor[ii], AnchorLen));
const auto& yolo = mYoloKernel[ii];
CUDA_CHECK(cudaMemcpy(mAnchor[ii], yolo.anchors, AnchorLen, cudaMemcpyHostToDevice));
}
assert(d == a + length);
}
@@ -62,8 +85,11 @@ namespace nvinfer1
write(d, mClassCount);
write(d, mThreadCount);
write(d, mKernelCount);
auto kernelSize = mKernelCount*sizeof(YoloKernel);
memcpy(d,mYoloKernel.data(),kernelSize);
write(d, mYoloV5NetWidth);
write(d, mYoloV5NetHeight);
write(d, mMaxOutObject);
auto kernelSize = mKernelCount * sizeof(YoloKernel);
memcpy(d, mYoloKernel.data(), kernelSize);
d += kernelSize;
assert(d == a + getSerializationSize());
@@ -71,7 +97,7 @@ namespace nvinfer1
size_t YoloLayerPlugin::getSerializationSize() const
{
return sizeof(mClassCount) + sizeof(mThreadCount) + sizeof(mKernelCount) + sizeof(Yolo::YoloKernel) * mYoloKernel.size();
return sizeof(mClassCount) + sizeof(mThreadCount) + sizeof(mKernelCount) + sizeof(Yolo::YoloKernel) * mYoloKernel.size() + sizeof(mYoloV5NetWidth) + sizeof(mYoloV5NetHeight) + sizeof(mMaxOutObject);
}
int YoloLayerPlugin::initialize()
@@ -82,7 +108,7 @@ namespace nvinfer1
Dims YoloLayerPlugin::getOutputDimensions(int index, const Dims* inputs, int nbInputDims)
{
//output the result to channel
int totalsize = MAX_OUTPUT_BBOX_COUNT * sizeof(Detection) / sizeof(float);
int totalsize = mMaxOutObject * sizeof(Detection) / sizeof(float);
return Dims3(totalsize + 1, 1, 1);
}
@@ -146,26 +172,27 @@ namespace nvinfer1
// Clone the plugin
IPluginV2IOExt* YoloLayerPlugin::clone() const
{
YoloLayerPlugin *p = new YoloLayerPlugin();
YoloLayerPlugin* p = new YoloLayerPlugin(mClassCount, mYoloV5NetWidth, mYoloV5NetHeight, mMaxOutObject, mYoloKernel);
p->setPluginNamespace(mPluginNamespace);
return p;
}
__device__ float Logist(float data){ return 1.0f / (1.0f + expf(-data)); };
__device__ float Logist(float data) { return 1.0f / (1.0f + expf(-data)); };
__global__ void CalDetection(const float *input, float *output,int noElements,
int yoloWidth,int yoloHeight,const float anchors[CHECK_COUNT*2],int classes,int outputElem) {
__global__ void CalDetection(const float *input, float *output, int noElements,
const int netwidth, const int netheight, int maxoutobject, int yoloWidth, int yoloHeight, const float anchors[CHECK_COUNT * 2], int classes, int outputElem)
{
int idx = threadIdx.x + blockDim.x * blockIdx.x;
if (idx >= noElements) return;
int total_grid = yoloWidth * yoloHeight;
int bnIdx = idx / total_grid;
idx = idx - total_grid*bnIdx;
idx = idx - total_grid * bnIdx;
int info_len_i = 5 + classes;
const float* curInput = input + bnIdx * (info_len_i * total_grid * CHECK_COUNT);
for (int k = 0; k < 3; ++k) {
for (int k = 0; k < CHECK_COUNT; ++k) {
float box_prob = Logist(curInput[idx + k * info_len_i * total_grid + 4 * total_grid]);
if (box_prob < IGNORE_THRESH) continue;
int class_id = 0;
@@ -177,51 +204,57 @@ namespace nvinfer1
class_id = i - 5;
}
}
float *res_count = output + bnIdx*outputElem;
float *res_count = output + bnIdx * outputElem;
int count = (int)atomicAdd(res_count, 1);
if (count >= MAX_OUTPUT_BBOX_COUNT) return;
char* data = (char *)res_count + sizeof(float) + count * sizeof(Detection);
Detection* det = (Detection*)(data);
if (count >= maxoutobject) return;
char *data = (char*)res_count + sizeof(float) + count * sizeof(Detection);
Detection *det = (Detection*)(data);
int row = idx / yoloWidth;
int col = idx % yoloWidth;
//Location
det->bbox[0] = (col - 0.5f + 2.0f * Logist(curInput[idx + k * info_len_i * total_grid + 0 * total_grid])) * INPUT_W / yoloWidth;
det->bbox[1] = (row - 0.5f + 2.0f * Logist(curInput[idx + k * info_len_i * total_grid + 1 * total_grid])) * INPUT_H / yoloHeight;
// pytorch:
// y = x[i].sigmoid()
// y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i].to(x[i].device)) * self.stride[i] # xy
// y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
// X: (sigmoid(tx) + cx)/FeaturemapW * netwidth
det->bbox[0] = (col - 0.5f + 2.0f * Logist(curInput[idx + k * info_len_i * total_grid + 0 * total_grid])) * netwidth / yoloWidth;
det->bbox[1] = (row - 0.5f + 2.0f * Logist(curInput[idx + k * info_len_i * total_grid + 1 * total_grid])) * netheight / yoloHeight;
// W: (Pw * e^tw) / FeaturemapW * netwidth
// v5: https://github.com/ultralytics/yolov5/issues/471
det->bbox[2] = 2.0f * Logist(curInput[idx + k * info_len_i * total_grid + 2 * total_grid]);
det->bbox[2] = det->bbox[2] * det->bbox[2] * anchors[2*k];
det->bbox[2] = det->bbox[2] * det->bbox[2] * anchors[2 * k];
det->bbox[3] = 2.0f * Logist(curInput[idx + k * info_len_i * total_grid + 3 * total_grid]);
det->bbox[3] = det->bbox[3] * det->bbox[3] * anchors[2*k + 1];
det->bbox[3] = det->bbox[3] * det->bbox[3] * anchors[2 * k + 1];
det->conf = box_prob * max_cls_prob;
det->class_id = class_id;
}
}
void YoloLayerPlugin::forwardGpu(const float *const * inputs, float* output, cudaStream_t stream, int batchSize) {
int outputElem = 1 + MAX_OUTPUT_BBOX_COUNT * sizeof(Detection) / sizeof(float);
for(int idx = 0 ; idx < batchSize; ++idx) {
CUDA_CHECK(cudaMemset(output + idx*outputElem, 0, sizeof(float)));
void YoloLayerPlugin::forwardGpu(const float* const* inputs, float *output, cudaStream_t stream, int batchSize)
{
int outputElem = 1 + mMaxOutObject * sizeof(Detection) / sizeof(float);
for (int idx = 0; idx < batchSize; ++idx) {
CUDA_CHECK(cudaMemset(output + idx * outputElem, 0, sizeof(float)));
}
int numElem = 0;
for (unsigned int i = 0; i < mYoloKernel.size(); ++i)
{
for (unsigned int i = 0; i < mYoloKernel.size(); ++i) {
const auto& yolo = mYoloKernel[i];
numElem = yolo.width*yolo.height*batchSize;
if (numElem < mThreadCount)
mThreadCount = numElem;
CalDetection<<< (yolo.width*yolo.height*batchSize + mThreadCount - 1) / mThreadCount, mThreadCount, 0, stream>>>
(inputs[i], output, numElem, yolo.width, yolo.height, (float *)mAnchor[i], mClassCount, outputElem);
}
numElem = yolo.width * yolo.height * batchSize;
if (numElem < mThreadCount) mThreadCount = numElem;
//printf("Net: %d %d \n", mYoloV5NetWidth, mYoloV5NetHeight);
CalDetection << < (numElem + mThreadCount - 1) / mThreadCount, mThreadCount, 0, stream >> >
(inputs[i], output, numElem, mYoloV5NetWidth, mYoloV5NetHeight, mMaxOutObject, yolo.width, yolo.height, (float*)mAnchor[i], mClassCount, outputElem);
}
}
int YoloLayerPlugin::enqueue(int batchSize, const void*const * inputs, void** outputs, void* workspace, cudaStream_t stream)
int YoloLayerPlugin::enqueue(int batchSize, const void* const* inputs, void** outputs, void* workspace, cudaStream_t stream)
{
forwardGpu((const float *const *)inputs, (float*)outputs[0], stream, batchSize);
forwardGpu((const float* const*)inputs, (float*)outputs[0], stream, batchSize);
return 0;
}
@@ -238,22 +271,32 @@ namespace nvinfer1
const char* YoloPluginCreator::getPluginName() const
{
return "YoloLayer_TRT";
return "YoloLayer_TRT";
}
const char* YoloPluginCreator::getPluginVersion() const
{
return "1";
return "1";
}
const PluginFieldCollection* YoloPluginCreator::getFieldNames()
{
return &mFC;
return &mFC;
}
IPluginV2IOExt* YoloPluginCreator::createPlugin(const char* name, const PluginFieldCollection* fc)
{
YoloLayerPlugin* obj = new YoloLayerPlugin();
assert(fc->nbFields == 2);
assert(strcmp(fc->fields[0].name, "netinfo") == 0);
assert(strcmp(fc->fields[1].name, "kernels") == 0);
int *p_netinfo = (int*)(fc->fields[0].data);
int class_count = p_netinfo[0];
int input_w = p_netinfo[1];
int input_h = p_netinfo[2];
int max_output_object_count = p_netinfo[3];
std::vector<Yolo::YoloKernel> kernels(fc->fields[1].length);
memcpy(&kernels[0], fc->fields[1].data, kernels.size() * sizeof(Yolo::YoloKernel));
YoloLayerPlugin* obj = new YoloLayerPlugin(class_count, input_w, input_h, max_output_object_count, kernels);
obj->setPluginNamespace(mNamespace.c_str());
return obj;
}
@@ -261,10 +304,10 @@ namespace nvinfer1
IPluginV2IOExt* YoloPluginCreator::deserializePlugin(const char* name, const void* serialData, size_t serialLength)
{
// This object will be deleted when the network is destroyed, which will
// call MishPlugin::destroy()
// call YoloLayerPlugin::destroy()
YoloLayerPlugin* obj = new YoloLayerPlugin(serialData, serialLength);
obj->setPluginNamespace(mNamespace.c_str());
return obj;
}
}

View File

@@ -0,0 +1,137 @@
#ifndef _YOLO_LAYER_H
#define _YOLO_LAYER_H
#include <vector>
#include <string>
#include "NvInfer.h"
namespace Yolo
{
static constexpr int CHECK_COUNT = 3;
static constexpr float IGNORE_THRESH = 0.1f;
struct YoloKernel
{
int width;
int height;
float anchors[CHECK_COUNT * 2];
};
static constexpr int MAX_OUTPUT_BBOX_COUNT = 1000;
static constexpr int CLASS_NUM = 80;
static constexpr int INPUT_H = 640; // yolov5's input height and width must be divisible by 32.
static constexpr int INPUT_W = 640;
static constexpr int LOCATIONS = 4;
struct alignas(float) Detection {
//center_x center_y w h
float bbox[LOCATIONS];
float conf; // bbox_conf * cls_conf
float class_id;
};
}
namespace nvinfer1
{
class YoloLayerPlugin : public IPluginV2IOExt
{
public:
YoloLayerPlugin(int classCount, int netWidth, int netHeight, int maxOut, const std::vector<Yolo::YoloKernel>& vYoloKernel);
YoloLayerPlugin(const void* data, size_t length);
~YoloLayerPlugin();
int getNbOutputs() const override
{
return 1;
}
Dims getOutputDimensions(int index, const Dims* inputs, int nbInputDims) override;
int initialize() override;
virtual void terminate() override {};
virtual size_t getWorkspaceSize(int maxBatchSize) const override { return 0; }
virtual int enqueue(int batchSize, const void* const* inputs, void** outputs, void* workspace, cudaStream_t stream) override;
virtual size_t getSerializationSize() const override;
virtual void serialize(void* buffer) const override;
bool supportsFormatCombination(int pos, const PluginTensorDesc* inOut, int nbInputs, int nbOutputs) const override {
return inOut[pos].format == TensorFormat::kLINEAR && inOut[pos].type == DataType::kFLOAT;
}
const char* getPluginType() const override;
const char* getPluginVersion() const override;
void destroy() override;
IPluginV2IOExt* clone() const override;
void setPluginNamespace(const char* pluginNamespace) override;
const char* getPluginNamespace() const override;
DataType getOutputDataType(int index, const nvinfer1::DataType* inputTypes, int nbInputs) const override;
bool isOutputBroadcastAcrossBatch(int outputIndex, const bool* inputIsBroadcasted, int nbInputs) const override;
bool canBroadcastInputAcrossBatch(int inputIndex) const override;
void attachToContext(
cudnnContext* cudnnContext, cublasContext* cublasContext, IGpuAllocator* gpuAllocator) override;
void configurePlugin(const PluginTensorDesc* in, int nbInput, const PluginTensorDesc* out, int nbOutput) override;
void detachFromContext() override;
private:
void forwardGpu(const float* const* inputs, float *output, cudaStream_t stream, int batchSize = 1);
int mThreadCount = 256;
const char* mPluginNamespace;
int mKernelCount;
int mClassCount;
int mYoloV5NetWidth;
int mYoloV5NetHeight;
int mMaxOutObject;
std::vector<Yolo::YoloKernel> mYoloKernel;
void** mAnchor;
};
class YoloPluginCreator : public IPluginCreator
{
public:
YoloPluginCreator();
~YoloPluginCreator() override = default;
const char* getPluginName() const override;
const char* getPluginVersion() const override;
const PluginFieldCollection* getFieldNames() override;
IPluginV2IOExt* createPlugin(const char* name, const PluginFieldCollection* fc) override;
IPluginV2IOExt* deserializePlugin(const char* name, const void* serialData, size_t serialLength) override;
void setPluginNamespace(const char* libNamespace) override
{
mNamespace = libNamespace;
}
const char* getPluginNamespace() const override
{
return mNamespace.c_str();
}
private:
std::string mNamespace;
static PluginFieldCollection mFC;
static std::vector<PluginField> mPluginAttributes;
};
REGISTER_TENSORRT_PLUGIN(YoloPluginCreator);
};
#endif

View File

@@ -1,94 +0,0 @@
#ifndef __TRT_UTILS_H_
#define __TRT_UTILS_H_
#include <iostream>
#include <vector>
#include <algorithm>
#include <cudnn.h>
#ifndef CUDA_CHECK
#define CUDA_CHECK(callstr) \
{ \
cudaError_t error_code = callstr; \
if (error_code != cudaSuccess) { \
std::cerr << "CUDA error " << error_code << " at " << __FILE__ << ":" << __LINE__; \
assert(0); \
} \
}
#endif
namespace Tn
{
class Profiler : public nvinfer1::IProfiler
{
public:
void printLayerTimes(int itrationsTimes)
{
float totalTime = 0;
for (size_t i = 0; i < mProfile.size(); i++)
{
printf("%-40.40s %4.3fms\n", mProfile[i].first.c_str(), mProfile[i].second / itrationsTimes);
totalTime += mProfile[i].second;
}
printf("Time over all layers: %4.3f\n", totalTime / itrationsTimes);
}
private:
typedef std::pair<std::string, float> Record;
std::vector<Record> mProfile;
virtual void reportLayerTime(const char* layerName, float ms)
{
auto record = std::find_if(mProfile.begin(), mProfile.end(), [&](const Record& r){ return r.first == layerName; });
if (record == mProfile.end())
mProfile.push_back(std::make_pair(layerName, ms));
else
record->second += ms;
}
};
//Logger for TensorRT info/warning/errors
class Logger : public nvinfer1::ILogger
{
public:
Logger(): Logger(Severity::kWARNING) {}
Logger(Severity severity): reportableSeverity(severity) {}
void log(Severity severity, const char* msg) override
{
// suppress messages with severity enum value greater than the reportable
if (severity > reportableSeverity) return;
switch (severity)
{
case Severity::kINTERNAL_ERROR: std::cerr << "INTERNAL_ERROR: "; break;
case Severity::kERROR: std::cerr << "ERROR: "; break;
case Severity::kWARNING: std::cerr << "WARNING: "; break;
case Severity::kINFO: std::cerr << "INFO: "; break;
default: std::cerr << "UNKNOWN: "; break;
}
std::cerr << msg << std::endl;
}
Severity reportableSeverity{Severity::kWARNING};
};
template<typename T>
void write(char*& buffer, const T& val)
{
*reinterpret_cast<T*>(buffer) = val;
buffer += sizeof(T);
}
template<typename T>
void read(const char*& buffer, T& val)
{
val = *reinterpret_cast<const T*>(buffer);
buffer += sizeof(T);
}
}
#endif

View File

@@ -1,152 +0,0 @@
#ifndef _YOLO_LAYER_H
#define _YOLO_LAYER_H
#include <vector>
#include <string>
#include "NvInfer.h"
namespace Yolo
{
static constexpr int CHECK_COUNT = 3;
static constexpr float IGNORE_THRESH = 0.1f;
static constexpr int MAX_OUTPUT_BBOX_COUNT = 1000;
static constexpr int CLASS_NUM = 80;
static constexpr int INPUT_H = 608;
static constexpr int INPUT_W = 608;
struct YoloKernel
{
int width;
int height;
float anchors[CHECK_COUNT*2];
};
static constexpr YoloKernel yolo1 = {
INPUT_W / 32,
INPUT_H / 32,
{116,90, 156,198, 373,326}
};
static constexpr YoloKernel yolo2 = {
INPUT_W / 16,
INPUT_H / 16,
{30,61, 62,45, 59,119}
};
static constexpr YoloKernel yolo3 = {
INPUT_W / 8,
INPUT_H / 8,
{10,13, 16,30, 33,23}
};
static constexpr int LOCATIONS = 4;
struct alignas(float) Detection{
//center_x center_y w h
float bbox[LOCATIONS];
float conf; // bbox_conf * cls_conf
float class_id;
};
}
namespace nvinfer1
{
class YoloLayerPlugin: public IPluginV2IOExt
{
public:
explicit YoloLayerPlugin();
YoloLayerPlugin(const void* data, size_t length);
~YoloLayerPlugin();
int getNbOutputs() const override
{
return 1;
}
Dims getOutputDimensions(int index, const Dims* inputs, int nbInputDims) override;
int initialize() override;
virtual void terminate() override {};
virtual size_t getWorkspaceSize(int maxBatchSize) const override { return 0;}
virtual int enqueue(int batchSize, const void*const * inputs, void** outputs, void* workspace, cudaStream_t stream) override;
virtual size_t getSerializationSize() const override;
virtual void serialize(void* buffer) const override;
bool supportsFormatCombination(int pos, const PluginTensorDesc* inOut, int nbInputs, int nbOutputs) const override {
return inOut[pos].format == TensorFormat::kLINEAR && inOut[pos].type == DataType::kFLOAT;
}
const char* getPluginType() const override;
const char* getPluginVersion() const override;
void destroy() override;
IPluginV2IOExt* clone() const override;
void setPluginNamespace(const char* pluginNamespace) override;
const char* getPluginNamespace() const override;
DataType getOutputDataType(int index, const nvinfer1::DataType* inputTypes, int nbInputs) const override;
bool isOutputBroadcastAcrossBatch(int outputIndex, const bool* inputIsBroadcasted, int nbInputs) const override;
bool canBroadcastInputAcrossBatch(int inputIndex) const override;
void attachToContext(
cudnnContext* cudnnContext, cublasContext* cublasContext, IGpuAllocator* gpuAllocator) override;
void configurePlugin(const PluginTensorDesc* in, int nbInput, const PluginTensorDesc* out, int nbOutput) override;
void detachFromContext() override;
private:
void forwardGpu(const float *const * inputs,float * output, cudaStream_t stream,int batchSize = 1);
int mClassCount;
int mKernelCount;
std::vector<Yolo::YoloKernel> mYoloKernel;
int mThreadCount = 256;
void** mAnchor;
const char* mPluginNamespace;
};
class YoloPluginCreator : public IPluginCreator
{
public:
YoloPluginCreator();
~YoloPluginCreator() override = default;
const char* getPluginName() const override;
const char* getPluginVersion() const override;
const PluginFieldCollection* getFieldNames() override;
IPluginV2IOExt* createPlugin(const char* name, const PluginFieldCollection* fc) override;
IPluginV2IOExt* deserializePlugin(const char* name, const void* serialData, size_t serialLength) override;
void setPluginNamespace(const char* libNamespace) override
{
mNamespace = libNamespace;
}
const char* getPluginNamespace() const override
{
return mNamespace.c_str();
}
private:
std::string mNamespace;
static PluginFieldCollection mFC;
static std::vector<PluginField> mPluginAttributes;
};
REGISTER_TENSORRT_PLUGIN(YoloPluginCreator);
};
#endif