Add RT-DETR

This commit is contained in:
Marcos Luciano
2023-11-01 18:23:28 -03:00
parent 000bcd676d
commit 1177624dd2
4 changed files with 349 additions and 4 deletions

121
utils/export_rtdetr_pytorch.py Executable file
View File

@@ -0,0 +1,121 @@
import os
import sys
import argparse
import warnings
import onnx
import torch
import torch.nn as nn
from src.core import YAMLConfig
class DeepStreamOutput(nn.Module):
def __init__(self, img_size):
self.img_size = img_size
super().__init__()
def forward(self, x):
boxes = x['pred_boxes']
boxes[:, :, [0, 2]] *= self.img_size[1]
boxes[:, :, [1, 3]] *= self.img_size[0]
scores, classes = torch.max(x['pred_logits'], 2, keepdim=True)
classes = classes.float()
return boxes, scores, classes
class DeepStreamInput(nn.Module):
def __init__(self, img_size, device):
self.img_size = img_size
self.device = device
super().__init__()
def forward(self, x):
size = torch.tensor([[*self.img_size]]).to(self.device)
return x, size
def suppress_warnings():
warnings.filterwarnings('ignore', category=torch.jit.TracerWarning)
warnings.filterwarnings('ignore', category=UserWarning)
warnings.filterwarnings('ignore', category=DeprecationWarning)
def rtdetr_pytorch_export(weights, cfg_file, device):
cfg = YAMLConfig(cfg_file, resume=weights)
checkpoint = torch.load(weights, map_location=device)
if 'ema' in checkpoint:
state = checkpoint['ema']['module']
else:
state = checkpoint['model']
cfg.model.load_state_dict(state)
return cfg.model.deploy()
def main(args):
suppress_warnings()
print('\nStarting: %s' % args.weights)
print('Opening RT-DETR PyTorch model\n')
device = torch.device('cpu')
model = rtdetr_pytorch_export(args.weights, args.config, device)
img_size = args.size * 2 if len(args.size) == 1 else args.size
model = nn.Sequential(model, DeepStreamOutput(img_size))
onnx_input_im = torch.zeros(args.batch, 3, *img_size).to(device)
onnx_output_file = os.path.basename(args.weights).split('.pt')[0] + '.onnx'
dynamic_axes = {
'input': {
0: 'batch'
},
'boxes': {
0: 'batch'
},
'scores': {
0: 'batch'
},
'classes': {
0: 'batch'
}
}
print('\nExporting the model to ONNX')
torch.onnx.export(model, onnx_input_im, onnx_output_file, verbose=False, opset_version=args.opset,
do_constant_folding=True, input_names=['input'], output_names=['boxes', 'scores', 'classes'],
dynamic_axes=dynamic_axes if args.dynamic else None)
if args.simplify:
print('Simplifying the ONNX model')
import onnxsim
model_onnx = onnx.load(onnx_output_file)
model_onnx, _ = onnxsim.simplify(model_onnx)
onnx.save(model_onnx, onnx_output_file)
print('Done: %s\n' % onnx_output_file)
def parse_args():
parser = argparse.ArgumentParser(description='DeepStream RT-DETR PyTorch conversion')
parser.add_argument('-w', '--weights', required=True, help='Input weights (.pth) file path (required)')
parser.add_argument('-c', '--config', required=True, help='Input YAML (.yml) file path (required)')
parser.add_argument('-s', '--size', nargs='+', type=int, default=[640], help='Inference size [H,W] (default [640])')
parser.add_argument('--opset', type=int, default=16, help='ONNX opset version')
parser.add_argument('--simplify', action='store_true', help='ONNX simplify model')
parser.add_argument('--dynamic', action='store_true', help='Dynamic batch-size')
parser.add_argument('--batch', type=int, default=1, help='Static batch-size')
args = parser.parse_args()
if not os.path.isfile(args.weights):
raise SystemExit('Invalid weights file')
if not os.path.isfile(args.config):
raise SystemExit('Invalid config file')
if args.dynamic and args.batch > 1:
raise SystemExit('Cannot set dynamic batch-size and static batch-size at same time')
return args
if __name__ == '__main__':
args = parse_args()
sys.exit(main(args))