Add RT-DETR
This commit is contained in:
121
utils/export_rtdetr_pytorch.py
Executable file
121
utils/export_rtdetr_pytorch.py
Executable file
@@ -0,0 +1,121 @@
|
||||
import os
|
||||
import sys
|
||||
import argparse
|
||||
import warnings
|
||||
import onnx
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from src.core import YAMLConfig
|
||||
|
||||
|
||||
class DeepStreamOutput(nn.Module):
|
||||
def __init__(self, img_size):
|
||||
self.img_size = img_size
|
||||
super().__init__()
|
||||
|
||||
def forward(self, x):
|
||||
boxes = x['pred_boxes']
|
||||
boxes[:, :, [0, 2]] *= self.img_size[1]
|
||||
boxes[:, :, [1, 3]] *= self.img_size[0]
|
||||
scores, classes = torch.max(x['pred_logits'], 2, keepdim=True)
|
||||
classes = classes.float()
|
||||
return boxes, scores, classes
|
||||
|
||||
|
||||
class DeepStreamInput(nn.Module):
|
||||
def __init__(self, img_size, device):
|
||||
self.img_size = img_size
|
||||
self.device = device
|
||||
super().__init__()
|
||||
|
||||
def forward(self, x):
|
||||
size = torch.tensor([[*self.img_size]]).to(self.device)
|
||||
return x, size
|
||||
|
||||
|
||||
def suppress_warnings():
|
||||
warnings.filterwarnings('ignore', category=torch.jit.TracerWarning)
|
||||
warnings.filterwarnings('ignore', category=UserWarning)
|
||||
warnings.filterwarnings('ignore', category=DeprecationWarning)
|
||||
|
||||
|
||||
def rtdetr_pytorch_export(weights, cfg_file, device):
|
||||
cfg = YAMLConfig(cfg_file, resume=weights)
|
||||
checkpoint = torch.load(weights, map_location=device)
|
||||
if 'ema' in checkpoint:
|
||||
state = checkpoint['ema']['module']
|
||||
else:
|
||||
state = checkpoint['model']
|
||||
cfg.model.load_state_dict(state)
|
||||
return cfg.model.deploy()
|
||||
|
||||
|
||||
def main(args):
|
||||
suppress_warnings()
|
||||
|
||||
print('\nStarting: %s' % args.weights)
|
||||
|
||||
print('Opening RT-DETR PyTorch model\n')
|
||||
|
||||
device = torch.device('cpu')
|
||||
model = rtdetr_pytorch_export(args.weights, args.config, device)
|
||||
|
||||
img_size = args.size * 2 if len(args.size) == 1 else args.size
|
||||
|
||||
model = nn.Sequential(model, DeepStreamOutput(img_size))
|
||||
|
||||
onnx_input_im = torch.zeros(args.batch, 3, *img_size).to(device)
|
||||
onnx_output_file = os.path.basename(args.weights).split('.pt')[0] + '.onnx'
|
||||
|
||||
dynamic_axes = {
|
||||
'input': {
|
||||
0: 'batch'
|
||||
},
|
||||
'boxes': {
|
||||
0: 'batch'
|
||||
},
|
||||
'scores': {
|
||||
0: 'batch'
|
||||
},
|
||||
'classes': {
|
||||
0: 'batch'
|
||||
}
|
||||
}
|
||||
|
||||
print('\nExporting the model to ONNX')
|
||||
torch.onnx.export(model, onnx_input_im, onnx_output_file, verbose=False, opset_version=args.opset,
|
||||
do_constant_folding=True, input_names=['input'], output_names=['boxes', 'scores', 'classes'],
|
||||
dynamic_axes=dynamic_axes if args.dynamic else None)
|
||||
|
||||
if args.simplify:
|
||||
print('Simplifying the ONNX model')
|
||||
import onnxsim
|
||||
model_onnx = onnx.load(onnx_output_file)
|
||||
model_onnx, _ = onnxsim.simplify(model_onnx)
|
||||
onnx.save(model_onnx, onnx_output_file)
|
||||
|
||||
print('Done: %s\n' % onnx_output_file)
|
||||
|
||||
|
||||
def parse_args():
|
||||
parser = argparse.ArgumentParser(description='DeepStream RT-DETR PyTorch conversion')
|
||||
parser.add_argument('-w', '--weights', required=True, help='Input weights (.pth) file path (required)')
|
||||
parser.add_argument('-c', '--config', required=True, help='Input YAML (.yml) file path (required)')
|
||||
parser.add_argument('-s', '--size', nargs='+', type=int, default=[640], help='Inference size [H,W] (default [640])')
|
||||
parser.add_argument('--opset', type=int, default=16, help='ONNX opset version')
|
||||
parser.add_argument('--simplify', action='store_true', help='ONNX simplify model')
|
||||
parser.add_argument('--dynamic', action='store_true', help='Dynamic batch-size')
|
||||
parser.add_argument('--batch', type=int, default=1, help='Static batch-size')
|
||||
args = parser.parse_args()
|
||||
if not os.path.isfile(args.weights):
|
||||
raise SystemExit('Invalid weights file')
|
||||
if not os.path.isfile(args.config):
|
||||
raise SystemExit('Invalid config file')
|
||||
if args.dynamic and args.batch > 1:
|
||||
raise SystemExit('Cannot set dynamic batch-size and static batch-size at same time')
|
||||
return args
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
args = parse_args()
|
||||
sys.exit(main(args))
|
||||
Reference in New Issue
Block a user