Add RT-DETR
This commit is contained in:
@@ -22,16 +22,14 @@ NVIDIA DeepStream SDK 6.3 / 6.2 / 6.1.1 / 6.1 / 6.0.1 / 6.0 / 5.1 configuration
|
||||
* Support for non square models
|
||||
* Models benchmarks
|
||||
* Support for Darknet models (YOLOv4, etc) using cfg and weights conversion with GPU post-processing
|
||||
* Support for YOLO-NAS, PPYOLOE+, PPYOLOE, DAMO-YOLO, YOLOX, YOLOR, YOLOv8, YOLOv7, YOLOv6 and YOLOv5 using ONNX conversion with GPU post-processing
|
||||
* Support for RT-DETR, YOLO-NAS, PPYOLOE+, PPYOLOE, DAMO-YOLO, YOLOX, YOLOR, YOLOv8, YOLOv7, YOLOv6 and YOLOv5 using ONNX conversion with GPU post-processing
|
||||
* GPU bbox parser (it is slightly slower than CPU bbox parser on V100 GPU tests)
|
||||
* Support for DeepStream 5.1
|
||||
* Custom ONNX model parser (`NvDsInferYoloCudaEngineGet`)
|
||||
* Dynamic batch-size for Darknet and ONNX exported models
|
||||
* INT8 calibration (PTQ) for Darknet and ONNX exported models
|
||||
* New output structure (fix wrong output on DeepStream < 6.2) - it need to export the ONNX model with the new export file, generate the TensorRT engine again with the updated files, and use the new config_infer_primary file according to your model
|
||||
* **YOLO-Pose: https://github.com/marcoslucianops/DeepStream-Yolo-Pose**
|
||||
* **YOLO-Seg: https://github.com/marcoslucianops/DeepStream-Yolo-Seg**
|
||||
* **YOLO-Face: https://github.com/marcoslucianops/DeepStream-Yolo-Face**
|
||||
* **RT-DETR (https://github.com/lyuwenyu/RT-DETR/tree/main/rtdetr_pytorch)**
|
||||
|
||||
##
|
||||
|
||||
@@ -54,6 +52,7 @@ NVIDIA DeepStream SDK 6.3 / 6.2 / 6.1.1 / 6.1 / 6.0.1 / 6.0 / 5.1 configuration
|
||||
* [DAMO-YOLO usage](docs/DAMOYOLO.md)
|
||||
* [PP-YOLOE / PP-YOLOE+ usage](docs/PPYOLOE.md)
|
||||
* [YOLO-NAS usage](docs/YOLONAS.md)
|
||||
* [RT-DETR usage](docs/RTDETR.md)
|
||||
* [Using your custom model](docs/customModels.md)
|
||||
* [Multiple YOLO GIEs](docs/multipleGIEs.md)
|
||||
|
||||
|
||||
Reference in New Issue
Block a user