Add YOLOv6 support
This commit is contained in:
102
nvdsinfer_custom_impl_Yolo/layers/deconvolutional_layer.cpp
Normal file
102
nvdsinfer_custom_impl_Yolo/layers/deconvolutional_layer.cpp
Normal file
@@ -0,0 +1,102 @@
|
||||
/*
|
||||
* Created by Marcos Luciano
|
||||
* https://www.github.com/marcoslucianops
|
||||
*/
|
||||
|
||||
#include "deconvolutional_layer.h"
|
||||
|
||||
#include <cassert>
|
||||
|
||||
nvinfer1::ITensor*
|
||||
deconvolutionalLayer(int layerIdx, std::map<std::string, std::string>& block, std::vector<float>& weights,
|
||||
std::vector<nvinfer1::Weights>& trtWeights, int& weightPtr, std::string weightsType, int& inputChannels,
|
||||
nvinfer1::ITensor* input, nvinfer1::INetworkDefinition* network, std::string layerName)
|
||||
{
|
||||
nvinfer1::ITensor* output;
|
||||
|
||||
assert(block.at("type") == "deconvolutional");
|
||||
assert(block.find("filters") != block.end());
|
||||
assert(block.find("pad") != block.end());
|
||||
assert(block.find("size") != block.end());
|
||||
assert(block.find("stride") != block.end());
|
||||
|
||||
int filters = std::stoi(block.at("filters"));
|
||||
int padding = std::stoi(block.at("pad"));
|
||||
int kernelSize = std::stoi(block.at("size"));
|
||||
int stride = std::stoi(block.at("stride"));
|
||||
int bias = filters;
|
||||
|
||||
int groups = 1;
|
||||
if (block.find("groups") != block.end())
|
||||
groups = std::stoi(block.at("groups"));
|
||||
|
||||
if (block.find("bias") != block.end())
|
||||
bias = std::stoi(block.at("bias"));
|
||||
|
||||
int pad;
|
||||
if (padding)
|
||||
pad = (kernelSize - 1) / 2;
|
||||
else
|
||||
pad = 0;
|
||||
|
||||
int size = filters * inputChannels * kernelSize * kernelSize / groups;
|
||||
std::vector<float> bnBiases;
|
||||
std::vector<float> bnWeights;
|
||||
std::vector<float> bnRunningMean;
|
||||
std::vector<float> bnRunningVar;
|
||||
nvinfer1::Weights convWt {nvinfer1::DataType::kFLOAT, nullptr, size};
|
||||
nvinfer1::Weights convBias {nvinfer1::DataType::kFLOAT, nullptr, bias};
|
||||
|
||||
if (weightsType == "weights") {
|
||||
float* val;
|
||||
if (bias != 0) {
|
||||
val = new float[filters];
|
||||
for (int i = 0; i < filters; ++i) {
|
||||
val[i] = weights[weightPtr];
|
||||
++weightPtr;
|
||||
}
|
||||
convBias.values = val;
|
||||
trtWeights.push_back(convBias);
|
||||
}
|
||||
val = new float[size];
|
||||
for (int i = 0; i < size; ++i) {
|
||||
val[i] = weights[weightPtr];
|
||||
++weightPtr;
|
||||
}
|
||||
convWt.values = val;
|
||||
trtWeights.push_back(convWt);
|
||||
}
|
||||
else {
|
||||
float* val = new float[size];
|
||||
for (int i = 0; i < size; ++i) {
|
||||
val[i] = weights[weightPtr];
|
||||
++weightPtr;
|
||||
}
|
||||
convWt.values = val;
|
||||
trtWeights.push_back(convWt);
|
||||
if (bias != 0) {
|
||||
val = new float[filters];
|
||||
for (int i = 0; i < filters; ++i) {
|
||||
val[i] = weights[weightPtr];
|
||||
++weightPtr;
|
||||
}
|
||||
convBias.values = val;
|
||||
trtWeights.push_back(convBias);
|
||||
}
|
||||
}
|
||||
|
||||
nvinfer1::IDeconvolutionLayer* conv = network->addDeconvolutionNd(*input, filters,
|
||||
nvinfer1::Dims{2, {kernelSize, kernelSize}}, convWt, convBias);
|
||||
assert(conv != nullptr);
|
||||
std::string convLayerName = "deconv_" + layerName + std::to_string(layerIdx);
|
||||
conv->setName(convLayerName.c_str());
|
||||
conv->setStrideNd(nvinfer1::Dims{2, {stride, stride}});
|
||||
conv->setPaddingNd(nvinfer1::Dims{2, {pad, pad}});
|
||||
|
||||
if (block.find("groups") != block.end())
|
||||
conv->setNbGroups(groups);
|
||||
|
||||
output = conv->getOutput(0);
|
||||
|
||||
return output;
|
||||
}
|
||||
Reference in New Issue
Block a user