Add YOLOv6 support
This commit is contained in:
@@ -15,7 +15,7 @@
|
||||
#### 1. Download the YOLOX repo and install the requirements
|
||||
|
||||
```
|
||||
git clone https://github.com/Megvii-BaseDetection/YOLOX
|
||||
git clone https://github.com/Megvii-BaseDetection/YOLOX.git
|
||||
cd YOLOX
|
||||
pip3 install -r requirements.txt
|
||||
```
|
||||
@@ -28,7 +28,7 @@ Copy the `gen_wts_yolox.py` file from `DeepStream-Yolo/utils` directory to the `
|
||||
|
||||
#### 3. Download the model
|
||||
|
||||
Download the `pth` file from [YOLOX](https://github.com/Megvii-BaseDetection/YOLOX/releases) releases (example for YOLOX-s standard)
|
||||
Download the `pth` file from [YOLOX](https://github.com/Megvii-BaseDetection/YOLOX/releases/) releases (example for YOLOX-s standard)
|
||||
|
||||
```
|
||||
wget https://github.com/Megvii-BaseDetection/YOLOX/releases/download/0.1.1rc0/yolox_s.pth
|
||||
|
||||
@@ -46,6 +46,12 @@ Generate the `cfg` and `wts` files (example for YOLOv5s)
|
||||
python3 gen_wts_yoloV5.py -w yolov5s.pt
|
||||
```
|
||||
|
||||
**NOTE**: To convert a P6 model
|
||||
|
||||
```
|
||||
--p6
|
||||
```
|
||||
|
||||
**NOTE**: To change the inference size (defaut: 640)
|
||||
|
||||
```
|
||||
|
||||
145
docs/YOLOv6.md
Normal file
145
docs/YOLOv6.md
Normal file
@@ -0,0 +1,145 @@
|
||||
# YOLOv6 usage
|
||||
|
||||
**NOTE**: The yaml file is not required.
|
||||
|
||||
* [Convert model](#convert-model)
|
||||
* [Compile the lib](#compile-the-lib)
|
||||
* [Edit the config_infer_primary_yoloV6 file](#edit-the-config_infer_primary_yolov6-file)
|
||||
* [Edit the deepstream_app_config file](#edit-the-deepstream_app_config-file)
|
||||
* [Testing the model](#testing-the-model)
|
||||
|
||||
##
|
||||
|
||||
### Convert model
|
||||
|
||||
#### 1. Download the YOLOv6 repo and install the requirements
|
||||
|
||||
```
|
||||
git clone https://github.com/meituan/YOLOv6.git
|
||||
cd YOLOv6
|
||||
pip3 install -r requirements.txt
|
||||
```
|
||||
|
||||
**NOTE**: It is recommended to use Python virtualenv.
|
||||
|
||||
#### 2. Copy conversor
|
||||
|
||||
Copy the `gen_wts_yoloV6.py` file from `DeepStream-Yolo/utils` directory to the `YOLOv6` folder.
|
||||
|
||||
#### 3. Download the model
|
||||
|
||||
Download the `pt` file from [YOLOv6](https://github.com/meituan/YOLOv6/releases/) releases (example for YOLOv6-S 3.0)
|
||||
|
||||
```
|
||||
wget https://github.com/meituan/YOLOv6/releases/download/0.3.0/yolov6s.pt
|
||||
```
|
||||
|
||||
**NOTE**: You can use your custom model, but it is important to keep the YOLO model reference (`yolov6_`) in you `cfg` and `weights`/`wts` filenames to generate the engine correctly.
|
||||
|
||||
#### 4. Convert model
|
||||
|
||||
Generate the `cfg` and `wts` files (example for YOLOv6-S 3.0)
|
||||
|
||||
```
|
||||
python3 gen_wts_yoloV6.py -w yolov6s.pt
|
||||
```
|
||||
|
||||
**NOTE**: To convert a P6 model
|
||||
|
||||
```
|
||||
--p6
|
||||
```
|
||||
|
||||
**NOTE**: To change the inference size (defaut: 640)
|
||||
|
||||
```
|
||||
-s SIZE
|
||||
--size SIZE
|
||||
-s HEIGHT WIDTH
|
||||
--size HEIGHT WIDTH
|
||||
```
|
||||
|
||||
Example for 1280
|
||||
|
||||
```
|
||||
-s 1280
|
||||
```
|
||||
|
||||
or
|
||||
|
||||
```
|
||||
-s 1280 1280
|
||||
```
|
||||
|
||||
#### 5. Copy generated files
|
||||
|
||||
Copy the generated `cfg` and `wts` files to the `DeepStream-Yolo` folder.
|
||||
|
||||
##
|
||||
|
||||
### Compile the lib
|
||||
|
||||
Open the `DeepStream-Yolo` folder and compile the lib
|
||||
|
||||
* DeepStream 6.1.1 on x86 platform
|
||||
|
||||
```
|
||||
CUDA_VER=11.7 make -C nvdsinfer_custom_impl_Yolo
|
||||
```
|
||||
|
||||
* DeepStream 6.1 on x86 platform
|
||||
|
||||
```
|
||||
CUDA_VER=11.6 make -C nvdsinfer_custom_impl_Yolo
|
||||
```
|
||||
|
||||
* DeepStream 6.0.1 / 6.0 on x86 platform
|
||||
|
||||
```
|
||||
CUDA_VER=11.4 make -C nvdsinfer_custom_impl_Yolo
|
||||
```
|
||||
|
||||
* DeepStream 6.1.1 / 6.1 on Jetson platform
|
||||
|
||||
```
|
||||
CUDA_VER=11.4 make -C nvdsinfer_custom_impl_Yolo
|
||||
```
|
||||
|
||||
* DeepStream 6.0.1 / 6.0 on Jetson platform
|
||||
|
||||
```
|
||||
CUDA_VER=10.2 make -C nvdsinfer_custom_impl_Yolo
|
||||
```
|
||||
|
||||
##
|
||||
|
||||
### Edit the config_infer_primary_yoloV6 file
|
||||
|
||||
Edit the `config_infer_primary_yoloV6.txt` file according to your model (example for YOLOv6-S 3.0)
|
||||
|
||||
```
|
||||
[property]
|
||||
...
|
||||
custom-network-config=yolov6s.cfg
|
||||
model-file=yolov6s.wts
|
||||
...
|
||||
```
|
||||
|
||||
##
|
||||
|
||||
### Edit the deepstream_app_config file
|
||||
|
||||
```
|
||||
...
|
||||
[primary-gie]
|
||||
...
|
||||
config-file=config_infer_primary_yoloV6.txt
|
||||
```
|
||||
|
||||
##
|
||||
|
||||
### Testing the model
|
||||
|
||||
```
|
||||
deepstream-app -c deepstream_app_config.txt
|
||||
```
|
||||
@@ -31,7 +31,7 @@ Copy the `gen_wts_yoloV7.py` file from `DeepStream-Yolo/utils` directory to the
|
||||
Download the `pt` file from [YOLOv7](https://github.com/WongKinYiu/yolov7/releases/) releases (example for YOLOv7)
|
||||
|
||||
```
|
||||
wget hhttps://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7.pt
|
||||
wget https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7.pt
|
||||
```
|
||||
|
||||
**NOTE**: You can use your custom model, but it is important to keep the YOLO model reference (`yolov7_`) in you `cfg` and `weights`/`wts` filenames to generate the engine correctly.
|
||||
@@ -48,6 +48,12 @@ Generate the `cfg` and `wts` files (example for YOLOv7)
|
||||
python3 gen_wts_yoloV7.py -w yolov7.pt
|
||||
```
|
||||
|
||||
**NOTE**: To convert a P6 model
|
||||
|
||||
```
|
||||
--p6
|
||||
```
|
||||
|
||||
**NOTE**: To change the inference size (defaut: 640)
|
||||
|
||||
```
|
||||
|
||||
Reference in New Issue
Block a user