Add YOLOv6 support

This commit is contained in:
Marcos Luciano
2023-02-01 02:52:01 -03:00
parent 69f29f8934
commit 087a41acf6
19 changed files with 982 additions and 65 deletions

View File

@@ -15,7 +15,7 @@
#### 1. Download the YOLOX repo and install the requirements
```
git clone https://github.com/Megvii-BaseDetection/YOLOX
git clone https://github.com/Megvii-BaseDetection/YOLOX.git
cd YOLOX
pip3 install -r requirements.txt
```
@@ -28,7 +28,7 @@ Copy the `gen_wts_yolox.py` file from `DeepStream-Yolo/utils` directory to the `
#### 3. Download the model
Download the `pth` file from [YOLOX](https://github.com/Megvii-BaseDetection/YOLOX/releases) releases (example for YOLOX-s standard)
Download the `pth` file from [YOLOX](https://github.com/Megvii-BaseDetection/YOLOX/releases/) releases (example for YOLOX-s standard)
```
wget https://github.com/Megvii-BaseDetection/YOLOX/releases/download/0.1.1rc0/yolox_s.pth

View File

@@ -46,6 +46,12 @@ Generate the `cfg` and `wts` files (example for YOLOv5s)
python3 gen_wts_yoloV5.py -w yolov5s.pt
```
**NOTE**: To convert a P6 model
```
--p6
```
**NOTE**: To change the inference size (defaut: 640)
```

145
docs/YOLOv6.md Normal file
View File

@@ -0,0 +1,145 @@
# YOLOv6 usage
**NOTE**: The yaml file is not required.
* [Convert model](#convert-model)
* [Compile the lib](#compile-the-lib)
* [Edit the config_infer_primary_yoloV6 file](#edit-the-config_infer_primary_yolov6-file)
* [Edit the deepstream_app_config file](#edit-the-deepstream_app_config-file)
* [Testing the model](#testing-the-model)
##
### Convert model
#### 1. Download the YOLOv6 repo and install the requirements
```
git clone https://github.com/meituan/YOLOv6.git
cd YOLOv6
pip3 install -r requirements.txt
```
**NOTE**: It is recommended to use Python virtualenv.
#### 2. Copy conversor
Copy the `gen_wts_yoloV6.py` file from `DeepStream-Yolo/utils` directory to the `YOLOv6` folder.
#### 3. Download the model
Download the `pt` file from [YOLOv6](https://github.com/meituan/YOLOv6/releases/) releases (example for YOLOv6-S 3.0)
```
wget https://github.com/meituan/YOLOv6/releases/download/0.3.0/yolov6s.pt
```
**NOTE**: You can use your custom model, but it is important to keep the YOLO model reference (`yolov6_`) in you `cfg` and `weights`/`wts` filenames to generate the engine correctly.
#### 4. Convert model
Generate the `cfg` and `wts` files (example for YOLOv6-S 3.0)
```
python3 gen_wts_yoloV6.py -w yolov6s.pt
```
**NOTE**: To convert a P6 model
```
--p6
```
**NOTE**: To change the inference size (defaut: 640)
```
-s SIZE
--size SIZE
-s HEIGHT WIDTH
--size HEIGHT WIDTH
```
Example for 1280
```
-s 1280
```
or
```
-s 1280 1280
```
#### 5. Copy generated files
Copy the generated `cfg` and `wts` files to the `DeepStream-Yolo` folder.
##
### Compile the lib
Open the `DeepStream-Yolo` folder and compile the lib
* DeepStream 6.1.1 on x86 platform
```
CUDA_VER=11.7 make -C nvdsinfer_custom_impl_Yolo
```
* DeepStream 6.1 on x86 platform
```
CUDA_VER=11.6 make -C nvdsinfer_custom_impl_Yolo
```
* DeepStream 6.0.1 / 6.0 on x86 platform
```
CUDA_VER=11.4 make -C nvdsinfer_custom_impl_Yolo
```
* DeepStream 6.1.1 / 6.1 on Jetson platform
```
CUDA_VER=11.4 make -C nvdsinfer_custom_impl_Yolo
```
* DeepStream 6.0.1 / 6.0 on Jetson platform
```
CUDA_VER=10.2 make -C nvdsinfer_custom_impl_Yolo
```
##
### Edit the config_infer_primary_yoloV6 file
Edit the `config_infer_primary_yoloV6.txt` file according to your model (example for YOLOv6-S 3.0)
```
[property]
...
custom-network-config=yolov6s.cfg
model-file=yolov6s.wts
...
```
##
### Edit the deepstream_app_config file
```
...
[primary-gie]
...
config-file=config_infer_primary_yoloV6.txt
```
##
### Testing the model
```
deepstream-app -c deepstream_app_config.txt
```

View File

@@ -31,7 +31,7 @@ Copy the `gen_wts_yoloV7.py` file from `DeepStream-Yolo/utils` directory to the
Download the `pt` file from [YOLOv7](https://github.com/WongKinYiu/yolov7/releases/) releases (example for YOLOv7)
```
wget hhttps://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7.pt
wget https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7.pt
```
**NOTE**: You can use your custom model, but it is important to keep the YOLO model reference (`yolov7_`) in you `cfg` and `weights`/`wts` filenames to generate the engine correctly.
@@ -48,6 +48,12 @@ Generate the `cfg` and `wts` files (example for YOLOv7)
python3 gen_wts_yoloV7.py -w yolov7.pt
```
**NOTE**: To convert a P6 model
```
--p6
```
**NOTE**: To change the inference size (defaut: 640)
```