Big update

This commit is contained in:
Marcos Luciano
2023-05-19 03:05:43 -03:00
parent 68f762d5bd
commit 07feae9509
86 changed files with 1523 additions and 5223 deletions

View File

@@ -34,8 +34,8 @@ Yolo::Yolo(const NetworkInfo& networkInfo) : m_InputBlobName(networkInfo.inputBl
m_NetworkType(networkInfo.networkType), m_ConfigFilePath(networkInfo.configFilePath),
m_WtsFilePath(networkInfo.wtsFilePath), m_Int8CalibPath(networkInfo.int8CalibPath), m_DeviceType(networkInfo.deviceType),
m_NumDetectedClasses(networkInfo.numDetectedClasses), m_ClusterMode(networkInfo.clusterMode),
m_NetworkMode(networkInfo.networkMode), m_ScoreThreshold(networkInfo.scoreThreshold), m_InputH(0), m_InputW(0),
m_InputC(0), m_InputSize(0), m_NumClasses(0), m_LetterBox(0), m_NewCoords(0), m_YoloCount(0)
m_NetworkMode(networkInfo.networkMode), m_InputH(0), m_InputW(0), m_InputC(0), m_InputSize(0), m_NumClasses(0),
m_LetterBox(0), m_NewCoords(0), m_YoloCount(0)
{
}
@@ -130,18 +130,6 @@ Yolo::buildYoloNetwork(std::vector<float>& weights, nvinfer1::INetworkDefinition
{
int weightPtr = 0;
std::string weightsType = "wts";
if (m_WtsFilePath.find(".weights") != std::string::npos)
weightsType = "weights";
float eps = 1.0e-5;
if (m_NetworkType.find("yolov5") != std::string::npos || m_NetworkType.find("yolov6") != std::string::npos ||
m_NetworkType.find("yolov7") != std::string::npos || m_NetworkType.find("yolov8") != std::string::npos ||
m_NetworkType.find("yolox") != std::string::npos)
eps = 1.0e-3;
else if (m_NetworkType.find("yolor") != std::string::npos)
eps = 1.0e-4;
nvinfer1::ITensor* data = network.addInput(m_InputBlobName.c_str(), nvinfer1::DataType::kFLOAT,
nvinfer1::Dims{3, {static_cast<int>(m_InputC), static_cast<int>(m_InputH), static_cast<int>(m_InputW)}});
assert(data != nullptr && data->getDimensions().nbDims > 0);
@@ -152,18 +140,15 @@ Yolo::buildYoloNetwork(std::vector<float>& weights, nvinfer1::INetworkDefinition
nvinfer1::ITensor* yoloTensorInputs[m_YoloCount];
uint yoloCountInputs = 0;
int modelType = -1;
for (uint i = 0; i < m_ConfigBlocks.size(); ++i) {
std::string layerIndex = "(" + std::to_string(tensorOutputs.size()) + ")";
if (m_ConfigBlocks.at(i).at("type") == "net")
printLayerInfo("", "Layer", "Input Shape", "Output Shape", "WeightPtr");
else if (m_ConfigBlocks.at(i).at("type") == "convolutional") {
else if (m_ConfigBlocks.at(i).at("type") == "conv" || m_ConfigBlocks.at(i).at("type") == "convolutional") {
int channels = getNumChannels(previous);
std::string inputVol = dimsToString(previous->getDimensions());
previous = convolutionalLayer(i, m_ConfigBlocks.at(i), weights, m_TrtWeights, weightPtr, weightsType, channels, eps,
previous, &network);
previous = convolutionalLayer(i, m_ConfigBlocks.at(i), weights, m_TrtWeights, weightPtr, channels, previous, &network);
assert(previous != nullptr);
std::string outputVol = dimsToString(previous->getDimensions());
tensorOutputs.push_back(previous);
@@ -173,39 +158,30 @@ Yolo::buildYoloNetwork(std::vector<float>& weights, nvinfer1::INetworkDefinition
else if (m_ConfigBlocks.at(i).at("type") == "deconvolutional") {
int channels = getNumChannels(previous);
std::string inputVol = dimsToString(previous->getDimensions());
previous = deconvolutionalLayer(i, m_ConfigBlocks.at(i), weights, m_TrtWeights, weightPtr, weightsType, channels,
previous, &network);
previous = deconvolutionalLayer(i, m_ConfigBlocks.at(i), weights, m_TrtWeights, weightPtr, channels, previous,
&network);
assert(previous != nullptr);
std::string outputVol = dimsToString(previous->getDimensions());
tensorOutputs.push_back(previous);
std::string layerName = "deconv";
printLayerInfo(layerIndex, layerName, inputVol, outputVol, std::to_string(weightPtr));
}
else if (m_ConfigBlocks.at(i).at("type") == "c2f") {
std::string inputVol = dimsToString(previous->getDimensions());
previous = c2fLayer(i, m_ConfigBlocks.at(i), weights, m_TrtWeights, weightPtr, weightsType, eps, previous, &network);
assert(previous != nullptr);
std::string outputVol = dimsToString(previous->getDimensions());
tensorOutputs.push_back(previous);
std::string layerName = "c2f_" + m_ConfigBlocks.at(i).at("activation");
printLayerInfo(layerIndex, layerName, inputVol, outputVol, std::to_string(weightPtr));
}
else if (m_ConfigBlocks.at(i).at("type") == "batchnorm") {
std::string inputVol = dimsToString(previous->getDimensions());
previous = batchnormLayer(i, m_ConfigBlocks.at(i), weights, m_TrtWeights, weightPtr, weightsType, eps, previous,
&network);
previous = batchnormLayer(i, m_ConfigBlocks.at(i), weights, m_TrtWeights, weightPtr, previous, &network);
assert(previous != nullptr);
std::string outputVol = dimsToString(previous->getDimensions());
tensorOutputs.push_back(previous);
std::string layerName = "batchnorm_" + m_ConfigBlocks.at(i).at("activation");
printLayerInfo(layerIndex, layerName, inputVol, outputVol, std::to_string(weightPtr));
}
else if (m_ConfigBlocks.at(i).at("type") == "implicit_add" || m_ConfigBlocks.at(i).at("type") == "implicit_mul") {
else if (m_ConfigBlocks.at(i).at("type") == "implicit" || m_ConfigBlocks.at(i).at("type") == "implicit_add" ||
m_ConfigBlocks.at(i).at("type") == "implicit_mul") {
previous = implicitLayer(i, m_ConfigBlocks.at(i), weights, m_TrtWeights, weightPtr, &network);
assert(previous != nullptr);
std::string outputVol = dimsToString(previous->getDimensions());
tensorOutputs.push_back(previous);
std::string layerName = m_ConfigBlocks.at(i).at("type");
std::string layerName = "implicit";
printLayerInfo(layerIndex, layerName, "-", outputVol, std::to_string(weightPtr));
}
else if (m_ConfigBlocks.at(i).at("type") == "shift_channels" || m_ConfigBlocks.at(i).at("type") == "control_channels") {
@@ -234,27 +210,44 @@ Yolo::buildYoloNetwork(std::vector<float>& weights, nvinfer1::INetworkDefinition
assert((i + from - 1 >= 0) && (i + from - 1 < tensorOutputs.size()));
assert(i + from - 1 < i - 2);
std::string mode = "add";
if (m_ConfigBlocks.at(i).find("mode") != m_ConfigBlocks.at(i).end())
mode = m_ConfigBlocks.at(i).at("mode");
std::string activation = "linear";
if (m_ConfigBlocks.at(i).find("activation") != m_ConfigBlocks.at(i).end())
activation = m_ConfigBlocks.at(i).at("activation");
std::string inputVol = dimsToString(previous->getDimensions());
std::string shortcutVol = dimsToString(tensorOutputs[i + from - 1]->getDimensions());
previous = shortcutLayer(i, mode, activation, inputVol, shortcutVol, m_ConfigBlocks.at(i), previous,
previous = shortcutLayer(i, activation, inputVol, shortcutVol, m_ConfigBlocks.at(i), previous,
tensorOutputs[i + from - 1], &network);
assert(previous != nullptr);
std::string outputVol = dimsToString(previous->getDimensions());
tensorOutputs.push_back(previous);
std::string layerName = "shortcut_" + mode + "_" + activation + ": " + std::to_string(i + from - 1);
std::string layerName = "shortcut_" + activation + ": " + std::to_string(i + from - 1);
printLayerInfo(layerIndex, layerName, inputVol, outputVol, "-");
if (mode == "add" && inputVol != shortcutVol)
if (inputVol != shortcutVol)
std::cout << inputVol << " +" << shortcutVol << std::endl;
}
else if (m_ConfigBlocks.at(i).at("type") == "sam") {
assert(m_ConfigBlocks.at(i).find("from") != m_ConfigBlocks.at(i).end());
int from = stoi(m_ConfigBlocks.at(i).at("from"));
if (from > 0)
from = from - i + 1;
assert((i - 2 >= 0) && (i - 2 < tensorOutputs.size()));
assert((i + from - 1 >= 0) && (i + from - 1 < tensorOutputs.size()));
assert(i + from - 1 < i - 2);
std::string activation = "linear";
if (m_ConfigBlocks.at(i).find("activation") != m_ConfigBlocks.at(i).end())
activation = m_ConfigBlocks.at(i).at("activation");
std::string inputVol = dimsToString(previous->getDimensions());
previous = samLayer(i, activation, m_ConfigBlocks.at(i), previous, tensorOutputs[i + from - 1], &network);
assert(previous != nullptr);
std::string outputVol = dimsToString(previous->getDimensions());
tensorOutputs.push_back(previous);
std::string layerName = "sam_" + activation + ": " + std::to_string(i + from - 1);
printLayerInfo(layerIndex, layerName, inputVol, outputVol, "-");
}
else if (m_ConfigBlocks.at(i).at("type") == "route") {
std::string layers;
previous = routeLayer(i, layers, m_ConfigBlocks.at(i), tensorOutputs, &network);
@@ -273,7 +266,8 @@ Yolo::buildYoloNetwork(std::vector<float>& weights, nvinfer1::INetworkDefinition
std::string layerName = "upsample";
printLayerInfo(layerIndex, layerName, inputVol, outputVol, "-");
}
else if (m_ConfigBlocks.at(i).at("type") == "maxpool" || m_ConfigBlocks.at(i).at("type") == "avgpool") {
else if (m_ConfigBlocks.at(i).at("type") == "max" || m_ConfigBlocks.at(i).at("type") == "maxpool" ||
m_ConfigBlocks.at(i).at("type") == "avg" || m_ConfigBlocks.at(i).at("type") == "avgpool") {
std::string inputVol = dimsToString(previous->getDimensions());
previous = poolingLayer(i, m_ConfigBlocks.at(i), previous, &network);
assert(previous != nullptr);
@@ -282,62 +276,33 @@ Yolo::buildYoloNetwork(std::vector<float>& weights, nvinfer1::INetworkDefinition
std::string layerName = m_ConfigBlocks.at(i).at("type");
printLayerInfo(layerIndex, layerName, inputVol, outputVol, "-");
}
else if (m_ConfigBlocks.at(i).at("type") == "reorg3d") {
std::string inputVol = dimsToString(previous->getDimensions());
previous = reorgLayer(i, m_ConfigBlocks.at(i), previous, &network);
assert(previous != nullptr);
std::string outputVol = dimsToString(previous->getDimensions());
tensorOutputs.push_back(previous);
std::string layerName = "reorg3d";
printLayerInfo(layerIndex, layerName, inputVol, outputVol, "-");
}
else if (m_ConfigBlocks.at(i).at("type") == "reorg") {
std::string inputVol = dimsToString(previous->getDimensions());
if (m_NetworkType.find("yolov2") != std::string::npos) {
nvinfer1::IPluginV2* reorgPlugin = createReorgPlugin(2);
assert(reorgPlugin != nullptr);
nvinfer1::IPluginV2Layer* reorg = network.addPluginV2(&previous, 1, *reorgPlugin);
assert(reorg != nullptr);
std::string reorglayerName = "reorg_" + std::to_string(i);
reorg->setName(reorglayerName.c_str());
previous = reorg->getOutput(0);
}
else
previous = reorgLayer(i, m_ConfigBlocks.at(i), previous, &network);
nvinfer1::IPluginV2* reorgPlugin = createReorgPlugin(2);
assert(reorgPlugin != nullptr);
nvinfer1::IPluginV2Layer* reorg = network.addPluginV2(&previous, 1, *reorgPlugin);
assert(reorg != nullptr);
std::string reorglayerName = "reorg_" + std::to_string(i);
reorg->setName(reorglayerName.c_str());
previous = reorg->getOutput(0);
assert(previous != nullptr);
std::string outputVol = dimsToString(previous->getDimensions());
tensorOutputs.push_back(previous);
std::string layerName = "reorg";
printLayerInfo(layerIndex, layerName, inputVol, outputVol, "-");
}
else if (m_ConfigBlocks.at(i).at("type") == "reduce") {
std::string inputVol = dimsToString(previous->getDimensions());
previous = reduceLayer(i, m_ConfigBlocks.at(i), previous, &network);
assert(previous != nullptr);
std::string outputVol = dimsToString(previous->getDimensions());
tensorOutputs.push_back(previous);
std::string layerName = "reduce";
printLayerInfo(layerIndex, layerName, inputVol, outputVol, "-");
}
else if (m_ConfigBlocks.at(i).at("type") == "shuffle") {
std::string inputVol = dimsToString(previous->getDimensions());
previous = shuffleLayer(i, m_ConfigBlocks.at(i), previous, tensorOutputs, &network);
assert(previous != nullptr);
std::string outputVol = dimsToString(previous->getDimensions());
tensorOutputs.push_back(previous);
std::string layerName = "shuffle";
printLayerInfo(layerIndex, layerName, inputVol, outputVol, "-");
}
else if (m_ConfigBlocks.at(i).at("type") == "softmax") {
std::string inputVol = dimsToString(previous->getDimensions());
previous = softmaxLayer(i, m_ConfigBlocks.at(i), previous, &network);
assert(previous != nullptr);
std::string outputVol = dimsToString(previous->getDimensions());
tensorOutputs.push_back(previous);
std::string layerName = "softmax";
printLayerInfo(layerIndex, layerName, inputVol, outputVol, "-");
}
else if (m_ConfigBlocks.at(i).at("type") == "yolo" || m_ConfigBlocks.at(i).at("type") == "region") {
if (m_ConfigBlocks.at(i).at("type") == "yolo")
if (m_NetworkType.find("yolor") != std::string::npos)
modelType = 2;
else
modelType = 1;
else
modelType = 0;
std::string blobName = modelType != 0 ? "yolo_" + std::to_string(i) : "region_" + std::to_string(i);
std::string blobName = m_ConfigBlocks.at(i).at("type") == "yolo" ? "yolo_" + std::to_string(i) :
"region_" + std::to_string(i);
nvinfer1::Dims prevTensorDims = previous->getDimensions();
TensorInfo& curYoloTensor = m_YoloTensors.at(yoloCountInputs);
curYoloTensor.blobName = blobName;
@@ -348,83 +313,11 @@ Yolo::buildYoloNetwork(std::vector<float>& weights, nvinfer1::INetworkDefinition
tensorOutputs.push_back(previous);
yoloTensorInputs[yoloCountInputs] = previous;
++yoloCountInputs;
std::string layerName = modelType != 0 ? "yolo" : "region";
std::string layerName = m_ConfigBlocks.at(i).at("type") == "yolo" ? "yolo" : "region";
printLayerInfo(layerIndex, layerName, inputVol, "-", "-");
}
else if (m_ConfigBlocks.at(i).at("type") == "cls") {
modelType = 3;
std::string blobName = "cls_" + std::to_string(i);
nvinfer1::Dims prevTensorDims = previous->getDimensions();
TensorInfo& curYoloTensor = m_YoloTensors.at(yoloCountInputs);
curYoloTensor.blobName = blobName;
curYoloTensor.numBBoxes = prevTensorDims.d[1];
m_NumClasses = prevTensorDims.d[0];
std::string inputVol = dimsToString(previous->getDimensions());
previous = clsLayer(i, m_ConfigBlocks.at(i), previous, &network);
assert(previous != nullptr);
std::string outputVol = dimsToString(previous->getDimensions());
tensorOutputs.push_back(previous);
yoloTensorInputs[yoloCountInputs] = previous;
++yoloCountInputs;
std::string layerName = "cls";
printLayerInfo(layerIndex, layerName, inputVol, outputVol, "-");
}
else if (m_ConfigBlocks.at(i).at("type") == "reg") {
modelType = 3;
std::string blobName = "reg_" + std::to_string(i);
nvinfer1::Dims prevTensorDims = previous->getDimensions();
TensorInfo& curYoloTensor = m_YoloTensors.at(yoloCountInputs);
curYoloTensor.blobName = blobName;
curYoloTensor.numBBoxes = prevTensorDims.d[1];
std::string inputVol = dimsToString(previous->getDimensions());
previous = regLayer(i, m_ConfigBlocks.at(i), weights, m_TrtWeights, weightPtr, previous, &network);
assert(previous != nullptr);
std::string outputVol = dimsToString(previous->getDimensions());
tensorOutputs.push_back(previous);
yoloTensorInputs[yoloCountInputs] = previous;
++yoloCountInputs;
std::string layerName = "reg";
printLayerInfo(layerIndex, layerName, inputVol, outputVol, std::to_string(weightPtr));
}
else if (m_ConfigBlocks.at(i).at("type") == "detect_v8") {
modelType = 4;
std::string blobName = "detect_v8_" + std::to_string(i);
nvinfer1::Dims prevTensorDims = previous->getDimensions();
TensorInfo& curYoloTensor = m_YoloTensors.at(yoloCountInputs);
curYoloTensor.blobName = blobName;
curYoloTensor.numBBoxes = prevTensorDims.d[1];
std::string inputVol = dimsToString(previous->getDimensions());
previous = detectV8Layer(i, m_ConfigBlocks.at(i), weights, m_TrtWeights, weightPtr, previous, &network);
assert(previous != nullptr);
std::string outputVol = dimsToString(previous->getDimensions());
tensorOutputs.push_back(previous);
yoloTensorInputs[yoloCountInputs] = previous;
++yoloCountInputs;
std::string layerName = "detect_v8";
printLayerInfo(layerIndex, layerName, inputVol, outputVol, std::to_string(weightPtr));
}
else if (m_ConfigBlocks.at(i).at("type") == "detect_x") {
modelType = 5;
std::string blobName = "detect_x_" + std::to_string(i);
nvinfer1::Dims prevTensorDims = previous->getDimensions();
TensorInfo& curYoloTensor = m_YoloTensors.at(yoloCountInputs);
curYoloTensor.blobName = blobName;
curYoloTensor.numBBoxes = prevTensorDims.d[0];
m_NumClasses = prevTensorDims.d[1] - 5;
std::string outputVol = dimsToString(previous->getDimensions());
tensorOutputs.push_back(previous);
yoloTensorInputs[yoloCountInputs] = previous;
++yoloCountInputs;
std::string layerName = "detect_x";
printLayerInfo(layerIndex, layerName, "-", outputVol, std::to_string(weightPtr));
else if (m_ConfigBlocks.at(i).at("type") == "dropout") {
// pass
}
else {
std::cerr << "\nUnsupported layer type --> \"" << m_ConfigBlocks.at(i).at("type") << "\"" << std::endl;
@@ -438,42 +331,24 @@ Yolo::buildYoloNetwork(std::vector<float>& weights, nvinfer1::INetworkDefinition
}
if (m_YoloCount == yoloCountInputs) {
assert((modelType != -1) && "\nCould not determine model type");
uint64_t outputSize = 0;
for (uint j = 0; j < yoloCountInputs; ++j) {
TensorInfo& curYoloTensor = m_YoloTensors.at(j);
if (modelType == 3 || modelType == 4 || modelType == 5)
outputSize = curYoloTensor.numBBoxes;
else
outputSize += curYoloTensor.gridSizeX * curYoloTensor.gridSizeY * curYoloTensor.numBBoxes;
outputSize += curYoloTensor.gridSizeX * curYoloTensor.gridSizeY * curYoloTensor.numBBoxes;
}
nvinfer1::IPluginV2* yoloPlugin = new YoloLayer(m_InputW, m_InputH, m_NumClasses, m_NewCoords, m_YoloTensors, outputSize,
modelType, m_ScoreThreshold);
nvinfer1::IPluginV2* yoloPlugin = new YoloLayer(m_InputW, m_InputH, m_NumClasses, m_NewCoords, m_YoloTensors,
outputSize);
assert(yoloPlugin != nullptr);
nvinfer1::IPluginV2Layer* yolo = network.addPluginV2(yoloTensorInputs, m_YoloCount, *yoloPlugin);
assert(yolo != nullptr);
std::string yoloLayerName = "yolo";
yolo->setName(yoloLayerName.c_str());
std::string outputlayerName;
nvinfer1::ITensor* num_detections = yolo->getOutput(0);
outputlayerName = "num_detections";
num_detections->setName(outputlayerName.c_str());
nvinfer1::ITensor* detection_boxes = yolo->getOutput(1);
outputlayerName = "detection_boxes";
detection_boxes->setName(outputlayerName.c_str());
nvinfer1::ITensor* detection_scores = yolo->getOutput(2);
outputlayerName = "detection_scores";
detection_scores->setName(outputlayerName.c_str());
nvinfer1::ITensor* detection_classes = yolo->getOutput(3);
outputlayerName = "detection_classes";
detection_classes->setName(outputlayerName.c_str());
network.markOutput(*num_detections);
network.markOutput(*detection_boxes);
network.markOutput(*detection_scores);
network.markOutput(*detection_classes);
nvinfer1::ITensor* outputYolo = yolo->getOutput(0);
std::string outputYoloLayerName = "output";
outputYolo->setName(outputYoloLayerName.c_str());
network.markOutput(*outputYolo);
}
else {
std::cerr << "\nError in yolo cfg file" << std::endl;
@@ -600,54 +475,6 @@ Yolo::parseConfigBlocks()
outputTensor.numBBoxes = outputTensor.mask.size() > 0 ? outputTensor.mask.size() : std::stoul(trim(block.at("num")));
m_YoloTensors.push_back(outputTensor);
}
else if ((block.at("type") == "cls") || (block.at("type") == "reg")) {
++m_YoloCount;
TensorInfo outputTensor;
m_YoloTensors.push_back(outputTensor);
}
else if (block.at("type") == "detect_v8") {
++m_YoloCount;
m_NumClasses = std::stoul(block.at("classes"));
TensorInfo outputTensor;
m_YoloTensors.push_back(outputTensor);
}
else if (block.at("type") == "detect_x") {
++m_YoloCount;
TensorInfo outputTensor;
std::vector<int> strides;
std::string stridesString = block.at("strides");
while (!stridesString.empty()) {
int npos = stridesString.find_first_of(',');
if (npos != -1) {
int stride = std::stof(trim(stridesString.substr(0, npos)));
strides.push_back(stride);
stridesString.erase(0, npos + 1);
}
else {
int stride = std::stof(trim(stridesString));
strides.push_back(stride);
break;
}
}
for (uint i = 0; i < strides.size(); ++i) {
int num_grid_y = m_InputH / strides[i];
int num_grid_x = m_InputW / strides[i];
for (int g1 = 0; g1 < num_grid_y; ++g1) {
for (int g0 = 0; g0 < num_grid_x; ++g0) {
outputTensor.anchors.push_back((float) g0);
outputTensor.anchors.push_back((float) g1);
outputTensor.mask.push_back(strides[i]);
}
}
}
m_YoloTensors.push_back(outputTensor);
}
}