Big update

This commit is contained in:
Marcos Luciano
2023-05-19 03:05:43 -03:00
parent 68f762d5bd
commit 07feae9509
86 changed files with 1523 additions and 5223 deletions

View File

@@ -26,12 +26,15 @@
#include "nvdsinfer_custom_impl.h"
#include "utils.h"
#include "yoloPlugins.h"
extern "C" bool
NvDsInferParseYolo(std::vector<NvDsInferLayerInfo> const& outputLayersInfo, NvDsInferNetworkInfo const& networkInfo,
NvDsInferParseDetectionParams const& detectionParams, std::vector<NvDsInferParseObjectInfo>& objectList);
extern "C" bool
NvDsInferParseYoloE(std::vector<NvDsInferLayerInfo> const& outputLayersInfo, NvDsInferNetworkInfo const& networkInfo,
NvDsInferParseDetectionParams const& detectionParams, std::vector<NvDsInferParseObjectInfo>& objectList);
static NvDsInferParseObjectInfo
convertBBox(const float& bx1, const float& by1, const float& bx2, const float& by2, const uint& netW, const uint& netH)
{
@@ -60,7 +63,9 @@ addBBoxProposal(const float bx1, const float by1, const float bx2, const float b
const int maxIndex, const float maxProb, std::vector<NvDsInferParseObjectInfo>& binfo)
{
NvDsInferParseObjectInfo bbi = convertBBox(bx1, by1, bx2, by2, netW, netH);
if (bbi.width < 1 || bbi.height < 1) return;
if (bbi.width < 1 || bbi.height < 1)
return;
bbi.detectionConfidence = maxProb;
bbi.classId = maxIndex;
@@ -68,23 +73,55 @@ addBBoxProposal(const float bx1, const float by1, const float bx2, const float b
}
static std::vector<NvDsInferParseObjectInfo>
decodeYoloTensor(const int* counts, const float* boxes, const float* scores, const int* classes, const uint& netW,
const uint& netH)
decodeTensorYolo(const float* detection, const uint& outputSize, const uint& count, const uint& netW, const uint& netH,
const std::vector<float>& preclusterThreshold)
{
std::vector<NvDsInferParseObjectInfo> binfo;
uint numBoxes = counts[0];
for (uint b = 0; b < numBoxes; ++b) {
float bx1 = boxes[b * 4 + 0];
float by1 = boxes[b * 4 + 1];
float bx2 = boxes[b * 4 + 2];
float by2 = boxes[b * 4 + 3];
for (uint b = 0; b < outputSize; ++b) {
float maxProb = count == 6 ? detection[b * count + 4] : detection[b * count + 4] * detection[b * count + 6];
int maxIndex = (int) detection[b * count + 5];
float maxProb = scores[b];
int maxIndex = classes[b];
if (maxProb < preclusterThreshold[maxIndex])
continue;
float bxc = detection[b * count + 0];
float byc = detection[b * count + 1];
float bw = detection[b * count + 2];
float bh = detection[b * count + 3];
float bx1 = bxc - bw / 2;
float by1 = byc - bh / 2;
float bx2 = bx1 + bw;
float by2 = by1 + bh;
addBBoxProposal(bx1, by1, bx2, by2, netW, netH, maxIndex, maxProb, binfo);
}
return binfo;
}
static std::vector<NvDsInferParseObjectInfo>
decodeTensorYoloE(const float* detection, const uint& outputSize, const uint& count, const uint& netW, const uint& netH,
const std::vector<float>& preclusterThreshold)
{
std::vector<NvDsInferParseObjectInfo> binfo;
for (uint b = 0; b < outputSize; ++b) {
float maxProb = count == 6 ? detection[b * count + 4] : detection[b * count + 4] * detection[b * count + 6];
int maxIndex = (int) detection[b * count + 5];
if (maxProb < preclusterThreshold[maxIndex])
continue;
float bx1 = detection[b * count + 0];
float by1 = detection[b * count + 1];
float bx2 = detection[b * count + 2];
float by2 = detection[b * count + 3];
addBBoxProposal(bx1, by1, bx2, by2, netW, netH, maxIndex, maxProb, binfo);
}
return binfo;
}
@@ -99,14 +136,39 @@ NvDsInferParseCustomYolo(std::vector<NvDsInferLayerInfo> const& outputLayersInfo
std::vector<NvDsInferParseObjectInfo> objects;
const NvDsInferLayerInfo& counts = outputLayersInfo[0];
const NvDsInferLayerInfo& boxes = outputLayersInfo[1];
const NvDsInferLayerInfo& scores = outputLayersInfo[2];
const NvDsInferLayerInfo& classes = outputLayersInfo[3];
const NvDsInferLayerInfo& layer = outputLayersInfo[0];
std::vector<NvDsInferParseObjectInfo> outObjs = decodeYoloTensor((const int*) (counts.buffer),
(const float*) (boxes.buffer), (const float*) (scores.buffer), (const int*) (classes.buffer), networkInfo.width,
networkInfo.height);
const uint outputSize = layer.inferDims.d[0];
const uint count = layer.inferDims.d[1];
std::vector<NvDsInferParseObjectInfo> outObjs = decodeTensorYolo((const float*) (layer.buffer), outputSize, count,
networkInfo.width, networkInfo.height, detectionParams.perClassPreclusterThreshold);
objects.insert(objects.end(), outObjs.begin(), outObjs.end());
objectList = objects;
return true;
}
static bool
NvDsInferParseCustomYoloE(std::vector<NvDsInferLayerInfo> const& outputLayersInfo, NvDsInferNetworkInfo const& networkInfo,
NvDsInferParseDetectionParams const& detectionParams, std::vector<NvDsInferParseObjectInfo>& objectList)
{
if (outputLayersInfo.empty()) {
std::cerr << "ERROR: Could not find output layer in bbox parsing" << std::endl;
return false;
}
std::vector<NvDsInferParseObjectInfo> objects;
const NvDsInferLayerInfo& layer = outputLayersInfo[0];
const uint outputSize = layer.inferDims.d[0];
const uint count = layer.inferDims.d[1];
std::vector<NvDsInferParseObjectInfo> outObjs = decodeTensorYoloE((const float*) (layer.buffer), outputSize, count,
networkInfo.width, networkInfo.height, detectionParams.perClassPreclusterThreshold);
objects.insert(objects.end(), outObjs.begin(), outObjs.end());
@@ -122,4 +184,11 @@ NvDsInferParseYolo(std::vector<NvDsInferLayerInfo> const& outputLayersInfo, NvDs
return NvDsInferParseCustomYolo(outputLayersInfo, networkInfo, detectionParams, objectList);
}
extern "C" bool
NvDsInferParseYoloE(std::vector<NvDsInferLayerInfo> const& outputLayersInfo, NvDsInferNetworkInfo const& networkInfo,
NvDsInferParseDetectionParams const& detectionParams, std::vector<NvDsInferParseObjectInfo>& objectList)
{
return NvDsInferParseCustomYoloE(outputLayersInfo, networkInfo, detectionParams, objectList);
}
CHECK_CUSTOM_PARSE_FUNC_PROTOTYPE(NvDsInferParseYolo);