Big update
This commit is contained in:
@@ -10,7 +10,7 @@
|
||||
|
||||
nvinfer1::ITensor*
|
||||
batchnormLayer(int layerIdx, std::map<std::string, std::string>& block, std::vector<float>& weights,
|
||||
std::vector<nvinfer1::Weights>& trtWeights, int& weightPtr, std::string weightsType, float eps, nvinfer1::ITensor* input,
|
||||
std::vector<nvinfer1::Weights>& trtWeights, int& weightPtr, nvinfer1::ITensor* input,
|
||||
nvinfer1::INetworkDefinition* network)
|
||||
{
|
||||
nvinfer1::ITensor* output;
|
||||
@@ -26,41 +26,21 @@ batchnormLayer(int layerIdx, std::map<std::string, std::string>& block, std::vec
|
||||
std::vector<float> bnRunningMean;
|
||||
std::vector<float> bnRunningVar;
|
||||
|
||||
if (weightsType == "weights") {
|
||||
for (int i = 0; i < filters; ++i) {
|
||||
bnBiases.push_back(weights[weightPtr]);
|
||||
++weightPtr;
|
||||
}
|
||||
for (int i = 0; i < filters; ++i) {
|
||||
bnWeights.push_back(weights[weightPtr]);
|
||||
++weightPtr;
|
||||
}
|
||||
for (int i = 0; i < filters; ++i) {
|
||||
bnRunningMean.push_back(weights[weightPtr]);
|
||||
++weightPtr;
|
||||
}
|
||||
for (int i = 0; i < filters; ++i) {
|
||||
bnRunningVar.push_back(sqrt(weights[weightPtr] + 1.0e-5));
|
||||
++weightPtr;
|
||||
}
|
||||
for (int i = 0; i < filters; ++i) {
|
||||
bnBiases.push_back(weights[weightPtr]);
|
||||
++weightPtr;
|
||||
}
|
||||
else {
|
||||
for (int i = 0; i < filters; ++i) {
|
||||
bnWeights.push_back(weights[weightPtr]);
|
||||
++weightPtr;
|
||||
}
|
||||
for (int i = 0; i < filters; ++i) {
|
||||
bnBiases.push_back(weights[weightPtr]);
|
||||
++weightPtr;
|
||||
}
|
||||
for (int i = 0; i < filters; ++i) {
|
||||
bnRunningMean.push_back(weights[weightPtr]);
|
||||
++weightPtr;
|
||||
}
|
||||
for (int i = 0; i < filters; ++i) {
|
||||
bnRunningVar.push_back(sqrt(weights[weightPtr] + eps));
|
||||
++weightPtr;
|
||||
}
|
||||
for (int i = 0; i < filters; ++i) {
|
||||
bnWeights.push_back(weights[weightPtr]);
|
||||
++weightPtr;
|
||||
}
|
||||
for (int i = 0; i < filters; ++i) {
|
||||
bnRunningMean.push_back(weights[weightPtr]);
|
||||
++weightPtr;
|
||||
}
|
||||
for (int i = 0; i < filters; ++i) {
|
||||
bnRunningVar.push_back(sqrt(weights[weightPtr] + 1.0e-5));
|
||||
++weightPtr;
|
||||
}
|
||||
|
||||
int size = filters;
|
||||
|
||||
@@ -14,7 +14,7 @@
|
||||
#include "activation_layer.h"
|
||||
|
||||
nvinfer1::ITensor* batchnormLayer(int layerIdx, std::map<std::string, std::string>& block, std::vector<float>& weights,
|
||||
std::vector<nvinfer1::Weights>& trtWeights, int& weightPtr, std::string weightsType, float eps, nvinfer1::ITensor* input,
|
||||
std::vector<nvinfer1::Weights>& trtWeights, int& weightPtr, nvinfer1::ITensor* input,
|
||||
nvinfer1::INetworkDefinition* network);
|
||||
|
||||
#endif
|
||||
|
||||
@@ -1,82 +0,0 @@
|
||||
/*
|
||||
* Created by Marcos Luciano
|
||||
* https://www.github.com/marcoslucianops
|
||||
*/
|
||||
|
||||
#include "c2f_layer.h"
|
||||
|
||||
#include <cassert>
|
||||
|
||||
#include "convolutional_layer.h"
|
||||
|
||||
nvinfer1::ITensor*
|
||||
c2fLayer(int layerIdx, std::map<std::string, std::string>& block, std::vector<float>& weights,
|
||||
std::vector<nvinfer1::Weights>& trtWeights, int& weightPtr, std::string weightsType, float eps, nvinfer1::ITensor* input,
|
||||
nvinfer1::INetworkDefinition* network)
|
||||
{
|
||||
nvinfer1::ITensor* output;
|
||||
|
||||
assert(block.at("type") == "c2f");
|
||||
assert(block.find("n") != block.end());
|
||||
assert(block.find("shortcut") != block.end());
|
||||
assert(block.find("filters") != block.end());
|
||||
|
||||
int n = std::stoi(block.at("n"));
|
||||
bool shortcut = (block.at("shortcut") == "1");
|
||||
int filters = std::stoi(block.at("filters"));
|
||||
|
||||
nvinfer1::Dims inputDims = input->getDimensions();
|
||||
|
||||
nvinfer1::ISliceLayer* sliceLt = network->addSlice(*input,nvinfer1::Dims{3, {0, 0, 0}},
|
||||
nvinfer1::Dims{3, {inputDims.d[0] / 2, inputDims.d[1], inputDims.d[2]}}, nvinfer1::Dims{3, {1, 1, 1}});
|
||||
assert(sliceLt != nullptr);
|
||||
std::string sliceLtLayerName = "slice_lt_" + std::to_string(layerIdx);
|
||||
sliceLt->setName(sliceLtLayerName.c_str());
|
||||
nvinfer1::ITensor* lt = sliceLt->getOutput(0);
|
||||
|
||||
nvinfer1::ISliceLayer* sliceRb = network->addSlice(*input,nvinfer1::Dims{3, {inputDims.d[0] / 2, 0, 0}},
|
||||
nvinfer1::Dims{3, {inputDims.d[0] / 2, inputDims.d[1], inputDims.d[2]}}, nvinfer1::Dims{3, {1, 1, 1}});
|
||||
assert(sliceRb != nullptr);
|
||||
std::string sliceRbLayerName = "slice_rb_" + std::to_string(layerIdx);
|
||||
sliceRb->setName(sliceRbLayerName.c_str());
|
||||
nvinfer1::ITensor* rb = sliceRb->getOutput(0);
|
||||
|
||||
std::vector<nvinfer1::ITensor*> concatInputs;
|
||||
concatInputs.push_back(lt);
|
||||
concatInputs.push_back(rb);
|
||||
output = rb;
|
||||
|
||||
for (int i = 0; i < n; ++i) {
|
||||
std::string cv1MlayerName = "c2f_1_" + std::to_string(i + 1) + "_";
|
||||
nvinfer1::ITensor* cv1M = convolutionalLayer(layerIdx, block, weights, trtWeights, weightPtr, weightsType, filters, eps,
|
||||
output, network, cv1MlayerName);
|
||||
assert(cv1M != nullptr);
|
||||
|
||||
std::string cv2MlayerName = "c2f_2_" + std::to_string(i + 1) + "_";
|
||||
nvinfer1::ITensor* cv2M = convolutionalLayer(layerIdx, block, weights, trtWeights, weightPtr, weightsType, filters, eps,
|
||||
cv1M, network, cv2MlayerName);
|
||||
assert(cv2M != nullptr);
|
||||
|
||||
if (shortcut) {
|
||||
nvinfer1::IElementWiseLayer* ew = network->addElementWise(*output, *cv2M, nvinfer1::ElementWiseOperation::kSUM);
|
||||
assert(ew != nullptr);
|
||||
std::string ewLayerName = "shortcut_c2f_" + std::to_string(i + 1) + "_" + std::to_string(layerIdx);
|
||||
ew->setName(ewLayerName.c_str());
|
||||
output = ew->getOutput(0);
|
||||
concatInputs.push_back(output);
|
||||
}
|
||||
else {
|
||||
output = cv2M;
|
||||
concatInputs.push_back(output);
|
||||
}
|
||||
}
|
||||
|
||||
nvinfer1::IConcatenationLayer* concat = network->addConcatenation(concatInputs.data(), concatInputs.size());
|
||||
assert(concat != nullptr);
|
||||
std::string concatLayerName = "route_" + std::to_string(layerIdx);
|
||||
concat->setName(concatLayerName.c_str());
|
||||
concat->setAxis(0);
|
||||
output = concat->getOutput(0);
|
||||
|
||||
return output;
|
||||
}
|
||||
@@ -1,18 +0,0 @@
|
||||
/*
|
||||
* Created by Marcos Luciano
|
||||
* https://www.github.com/marcoslucianops
|
||||
*/
|
||||
|
||||
#ifndef __C2F_LAYER_H__
|
||||
#define __C2F_LAYER_H__
|
||||
|
||||
#include <map>
|
||||
#include <vector>
|
||||
|
||||
#include "NvInfer.h"
|
||||
|
||||
nvinfer1::ITensor* c2fLayer(int layerIdx, std::map<std::string, std::string>& block, std::vector<float>& weights,
|
||||
std::vector<nvinfer1::Weights>& trtWeights, int& weightPtr, std::string weightsType, float eps, nvinfer1::ITensor* input,
|
||||
nvinfer1::INetworkDefinition* network);
|
||||
|
||||
#endif
|
||||
@@ -1,29 +0,0 @@
|
||||
/*
|
||||
* Created by Marcos Luciano
|
||||
* https://www.github.com/marcoslucianops
|
||||
*/
|
||||
|
||||
#include "cls_layer.h"
|
||||
|
||||
#include <cassert>
|
||||
|
||||
nvinfer1::ITensor*
|
||||
clsLayer(int layerIdx, std::map<std::string, std::string>& block, nvinfer1::ITensor* input,
|
||||
nvinfer1::INetworkDefinition* network)
|
||||
{
|
||||
nvinfer1::ITensor* output;
|
||||
|
||||
assert(block.at("type") == "cls");
|
||||
|
||||
nvinfer1::IShuffleLayer* shuffle = network->addShuffle(*input);
|
||||
assert(shuffle != nullptr);
|
||||
std::string shuffleLayerName = "shuffle_" + std::to_string(layerIdx);
|
||||
shuffle->setName(shuffleLayerName.c_str());
|
||||
nvinfer1::Permutation permutation;
|
||||
permutation.order[0] = 1;
|
||||
permutation.order[1] = 0;
|
||||
shuffle->setFirstTranspose(permutation);
|
||||
output = shuffle->getOutput(0);
|
||||
|
||||
return output;
|
||||
}
|
||||
@@ -1,16 +0,0 @@
|
||||
/*
|
||||
* Created by Marcos Luciano
|
||||
* https://www.github.com/marcoslucianops
|
||||
*/
|
||||
|
||||
#ifndef __CLS_LAYER_H__
|
||||
#define __CLS_LAYER_H__
|
||||
|
||||
#include <map>
|
||||
|
||||
#include "NvInfer.h"
|
||||
|
||||
nvinfer1::ITensor* clsLayer(int layerIdx, std::map<std::string, std::string>& block, nvinfer1::ITensor* input,
|
||||
nvinfer1::INetworkDefinition* network);
|
||||
|
||||
#endif
|
||||
@@ -10,8 +10,8 @@
|
||||
|
||||
nvinfer1::ITensor*
|
||||
convolutionalLayer(int layerIdx, std::map<std::string, std::string>& block, std::vector<float>& weights,
|
||||
std::vector<nvinfer1::Weights>& trtWeights, int& weightPtr, std::string weightsType, int& inputChannels, float eps,
|
||||
nvinfer1::ITensor* input, nvinfer1::INetworkDefinition* network, std::string layerName)
|
||||
std::vector<nvinfer1::Weights>& trtWeights, int& weightPtr, int& inputChannels, nvinfer1::ITensor* input,
|
||||
nvinfer1::INetworkDefinition* network, std::string layerName)
|
||||
{
|
||||
nvinfer1::ITensor* output;
|
||||
|
||||
@@ -58,117 +58,60 @@ convolutionalLayer(int layerIdx, std::map<std::string, std::string>& block, std:
|
||||
nvinfer1::Weights convWt {nvinfer1::DataType::kFLOAT, nullptr, size};
|
||||
nvinfer1::Weights convBias {nvinfer1::DataType::kFLOAT, nullptr, bias};
|
||||
|
||||
if (weightsType == "weights") {
|
||||
if (batchNormalize == false) {
|
||||
float* val;
|
||||
if (bias != 0) {
|
||||
val = new float[filters];
|
||||
for (int i = 0; i < filters; ++i) {
|
||||
val[i] = weights[weightPtr];
|
||||
++weightPtr;
|
||||
}
|
||||
convBias.values = val;
|
||||
trtWeights.push_back(convBias);
|
||||
}
|
||||
val = new float[size];
|
||||
for (int i = 0; i < size; ++i) {
|
||||
if (batchNormalize == false) {
|
||||
float* val;
|
||||
if (bias != 0) {
|
||||
val = new float[filters];
|
||||
for (int i = 0; i < filters; ++i) {
|
||||
val[i] = weights[weightPtr];
|
||||
++weightPtr;
|
||||
}
|
||||
convWt.values = val;
|
||||
trtWeights.push_back(convWt);
|
||||
convBias.values = val;
|
||||
trtWeights.push_back(convBias);
|
||||
}
|
||||
else {
|
||||
for (int i = 0; i < filters; ++i) {
|
||||
bnBiases.push_back(weights[weightPtr]);
|
||||
++weightPtr;
|
||||
}
|
||||
for (int i = 0; i < filters; ++i) {
|
||||
bnWeights.push_back(weights[weightPtr]);
|
||||
++weightPtr;
|
||||
}
|
||||
for (int i = 0; i < filters; ++i) {
|
||||
bnRunningMean.push_back(weights[weightPtr]);
|
||||
++weightPtr;
|
||||
}
|
||||
for (int i = 0; i < filters; ++i) {
|
||||
bnRunningVar.push_back(sqrt(weights[weightPtr] + 1.0e-5));
|
||||
++weightPtr;
|
||||
}
|
||||
float* val;
|
||||
if (bias != 0) {
|
||||
val = new float[filters];
|
||||
for (int i = 0; i < filters; ++i) {
|
||||
val[i] = weights[weightPtr];
|
||||
++weightPtr;
|
||||
}
|
||||
convBias.values = val;
|
||||
}
|
||||
val = new float[size];
|
||||
for (int i = 0; i < size; ++i) {
|
||||
val = new float[size];
|
||||
for (int i = 0; i < size; ++i) {
|
||||
val[i] = weights[weightPtr];
|
||||
++weightPtr;
|
||||
}
|
||||
convWt.values = val;
|
||||
trtWeights.push_back(convWt);
|
||||
if (bias != 0)
|
||||
trtWeights.push_back(convBias);
|
||||
}
|
||||
convWt.values = val;
|
||||
trtWeights.push_back(convWt);
|
||||
}
|
||||
else {
|
||||
if (batchNormalize == false) {
|
||||
float* val = new float[size];
|
||||
for (int i = 0; i < size; ++i) {
|
||||
for (int i = 0; i < filters; ++i) {
|
||||
bnBiases.push_back(weights[weightPtr]);
|
||||
++weightPtr;
|
||||
}
|
||||
for (int i = 0; i < filters; ++i) {
|
||||
bnWeights.push_back(weights[weightPtr]);
|
||||
++weightPtr;
|
||||
}
|
||||
for (int i = 0; i < filters; ++i) {
|
||||
bnRunningMean.push_back(weights[weightPtr]);
|
||||
++weightPtr;
|
||||
}
|
||||
for (int i = 0; i < filters; ++i) {
|
||||
bnRunningVar.push_back(sqrt(weights[weightPtr] + 1.0e-5));
|
||||
++weightPtr;
|
||||
}
|
||||
float* val;
|
||||
if (bias != 0) {
|
||||
val = new float[filters];
|
||||
for (int i = 0; i < filters; ++i) {
|
||||
val[i] = weights[weightPtr];
|
||||
++weightPtr;
|
||||
}
|
||||
convWt.values = val;
|
||||
trtWeights.push_back(convWt);
|
||||
if (bias != 0) {
|
||||
val = new float[filters];
|
||||
for (int i = 0; i < filters; ++i) {
|
||||
val[i] = weights[weightPtr];
|
||||
++weightPtr;
|
||||
}
|
||||
convBias.values = val;
|
||||
trtWeights.push_back(convBias);
|
||||
}
|
||||
convBias.values = val;
|
||||
}
|
||||
else {
|
||||
float* val = new float[size];
|
||||
for (int i = 0; i < size; ++i) {
|
||||
val[i] = weights[weightPtr];
|
||||
++weightPtr;
|
||||
}
|
||||
convWt.values = val;
|
||||
if (bias != 0) {
|
||||
val = new float[filters];
|
||||
for (int i = 0; i < filters; ++i) {
|
||||
val[i] = weights[weightPtr];
|
||||
++weightPtr;
|
||||
}
|
||||
convBias.values = val;
|
||||
}
|
||||
for (int i = 0; i < filters; ++i) {
|
||||
bnWeights.push_back(weights[weightPtr]);
|
||||
++weightPtr;
|
||||
}
|
||||
for (int i = 0; i < filters; ++i) {
|
||||
bnBiases.push_back(weights[weightPtr]);
|
||||
++weightPtr;
|
||||
}
|
||||
for (int i = 0; i < filters; ++i) {
|
||||
bnRunningMean.push_back(weights[weightPtr]);
|
||||
++weightPtr;
|
||||
}
|
||||
for (int i = 0; i < filters; ++i) {
|
||||
bnRunningVar.push_back(sqrt(weights[weightPtr] + eps));
|
||||
++weightPtr;
|
||||
}
|
||||
trtWeights.push_back(convWt);
|
||||
if (bias != 0)
|
||||
trtWeights.push_back(convBias);
|
||||
val = new float[size];
|
||||
for (int i = 0; i < size; ++i) {
|
||||
val[i] = weights[weightPtr];
|
||||
++weightPtr;
|
||||
}
|
||||
convWt.values = val;
|
||||
trtWeights.push_back(convWt);
|
||||
if (bias != 0)
|
||||
trtWeights.push_back(convBias);
|
||||
}
|
||||
|
||||
nvinfer1::IConvolutionLayer* conv = network->addConvolutionNd(*input, filters, nvinfer1::Dims{2, {kernelSize, kernelSize}},
|
||||
|
||||
@@ -14,7 +14,7 @@
|
||||
#include "activation_layer.h"
|
||||
|
||||
nvinfer1::ITensor* convolutionalLayer(int layerIdx, std::map<std::string, std::string>& block, std::vector<float>& weights,
|
||||
std::vector<nvinfer1::Weights>& trtWeights, int& weightPtr, std::string weightsType, int& inputChannels, float eps,
|
||||
nvinfer1::ITensor* input, nvinfer1::INetworkDefinition* network, std::string layerName = "");
|
||||
std::vector<nvinfer1::Weights>& trtWeights, int& weightPtr, int& inputChannels, nvinfer1::ITensor* input,
|
||||
nvinfer1::INetworkDefinition* network, std::string layerName = "");
|
||||
|
||||
#endif
|
||||
|
||||
@@ -9,8 +9,8 @@
|
||||
|
||||
nvinfer1::ITensor*
|
||||
deconvolutionalLayer(int layerIdx, std::map<std::string, std::string>& block, std::vector<float>& weights,
|
||||
std::vector<nvinfer1::Weights>& trtWeights, int& weightPtr, std::string weightsType, int& inputChannels,
|
||||
nvinfer1::ITensor* input, nvinfer1::INetworkDefinition* network, std::string layerName)
|
||||
std::vector<nvinfer1::Weights>& trtWeights, int& weightPtr, int& inputChannels, nvinfer1::ITensor* input,
|
||||
nvinfer1::INetworkDefinition* network, std::string layerName)
|
||||
{
|
||||
nvinfer1::ITensor* output;
|
||||
|
||||
@@ -47,43 +47,23 @@ deconvolutionalLayer(int layerIdx, std::map<std::string, std::string>& block, st
|
||||
nvinfer1::Weights convWt {nvinfer1::DataType::kFLOAT, nullptr, size};
|
||||
nvinfer1::Weights convBias {nvinfer1::DataType::kFLOAT, nullptr, bias};
|
||||
|
||||
if (weightsType == "weights") {
|
||||
float* val;
|
||||
if (bias != 0) {
|
||||
val = new float[filters];
|
||||
for (int i = 0; i < filters; ++i) {
|
||||
val[i] = weights[weightPtr];
|
||||
++weightPtr;
|
||||
}
|
||||
convBias.values = val;
|
||||
trtWeights.push_back(convBias);
|
||||
}
|
||||
val = new float[size];
|
||||
for (int i = 0; i < size; ++i) {
|
||||
float* val;
|
||||
if (bias != 0) {
|
||||
val = new float[filters];
|
||||
for (int i = 0; i < filters; ++i) {
|
||||
val[i] = weights[weightPtr];
|
||||
++weightPtr;
|
||||
}
|
||||
convWt.values = val;
|
||||
trtWeights.push_back(convWt);
|
||||
convBias.values = val;
|
||||
trtWeights.push_back(convBias);
|
||||
}
|
||||
else {
|
||||
float* val = new float[size];
|
||||
for (int i = 0; i < size; ++i) {
|
||||
val = new float[size];
|
||||
for (int i = 0; i < size; ++i) {
|
||||
val[i] = weights[weightPtr];
|
||||
++weightPtr;
|
||||
}
|
||||
convWt.values = val;
|
||||
trtWeights.push_back(convWt);
|
||||
if (bias != 0) {
|
||||
val = new float[filters];
|
||||
for (int i = 0; i < filters; ++i) {
|
||||
val[i] = weights[weightPtr];
|
||||
++weightPtr;
|
||||
}
|
||||
convBias.values = val;
|
||||
trtWeights.push_back(convBias);
|
||||
}
|
||||
}
|
||||
convWt.values = val;
|
||||
trtWeights.push_back(convWt);
|
||||
|
||||
nvinfer1::IDeconvolutionLayer* conv = network->addDeconvolutionNd(*input, filters,
|
||||
nvinfer1::Dims{2, {kernelSize, kernelSize}}, convWt, convBias);
|
||||
|
||||
@@ -12,7 +12,7 @@
|
||||
#include "NvInfer.h"
|
||||
|
||||
nvinfer1::ITensor* deconvolutionalLayer(int layerIdx, std::map<std::string, std::string>& block, std::vector<float>& weights,
|
||||
std::vector<nvinfer1::Weights>& trtWeights, int& weightPtr, std::string weightsType, int& inputChannels,
|
||||
nvinfer1::ITensor* input, nvinfer1::INetworkDefinition* network, std::string layerName = "");
|
||||
std::vector<nvinfer1::Weights>& trtWeights, int& weightPtr, int& inputChannels, nvinfer1::ITensor* input,
|
||||
nvinfer1::INetworkDefinition* network, std::string layerName = "");
|
||||
|
||||
#endif
|
||||
|
||||
@@ -1,196 +0,0 @@
|
||||
/*
|
||||
* Created by Marcos Luciano
|
||||
* https://www.github.com/marcoslucianops
|
||||
*/
|
||||
|
||||
#include "detect_v8_layer.h"
|
||||
|
||||
#include <cassert>
|
||||
|
||||
nvinfer1::ITensor*
|
||||
detectV8Layer(int layerIdx, std::map<std::string, std::string>& block, std::vector<float>& weights,
|
||||
std::vector<nvinfer1::Weights>& trtWeights, int& weightPtr, nvinfer1::ITensor* input,
|
||||
nvinfer1::INetworkDefinition* network)
|
||||
{
|
||||
nvinfer1::ITensor* output;
|
||||
|
||||
assert(block.at("type") == "detect_v8");
|
||||
assert(block.find("num") != block.end());
|
||||
assert(block.find("classes") != block.end());
|
||||
|
||||
int num = std::stoi(block.at("num"));
|
||||
int classes = std::stoi(block.at("classes"));
|
||||
int reg_max = num / 4;
|
||||
|
||||
nvinfer1::Dims inputDims = input->getDimensions();
|
||||
|
||||
nvinfer1::ISliceLayer* sliceBox = network->addSlice(*input, nvinfer1::Dims{2, {0, 0}},
|
||||
nvinfer1::Dims{2, {num, inputDims.d[1]}}, nvinfer1::Dims{2, {1, 1}});
|
||||
assert(sliceBox != nullptr);
|
||||
std::string sliceBoxLayerName = "slice_box_" + std::to_string(layerIdx);
|
||||
sliceBox->setName(sliceBoxLayerName.c_str());
|
||||
nvinfer1::ITensor* box = sliceBox->getOutput(0);
|
||||
|
||||
nvinfer1::ISliceLayer* sliceCls = network->addSlice(*input, nvinfer1::Dims{2, {num, 0}},
|
||||
nvinfer1::Dims{2, {classes, inputDims.d[1]}}, nvinfer1::Dims{2, {1, 1}});
|
||||
assert(sliceCls != nullptr);
|
||||
std::string sliceClsLayerName = "slice_cls_" + std::to_string(layerIdx);
|
||||
sliceCls->setName(sliceClsLayerName.c_str());
|
||||
nvinfer1::ITensor* cls = sliceCls->getOutput(0);
|
||||
|
||||
nvinfer1::IShuffleLayer* shuffle1Box = network->addShuffle(*box);
|
||||
assert(shuffle1Box != nullptr);
|
||||
std::string shuffle1BoxLayerName = "shuffle1_box_" + std::to_string(layerIdx);
|
||||
shuffle1Box->setName(shuffle1BoxLayerName.c_str());
|
||||
nvinfer1::Dims reshape1Dims = {3, {4, reg_max, inputDims.d[1]}};
|
||||
shuffle1Box->setReshapeDimensions(reshape1Dims);
|
||||
nvinfer1::Permutation permutation1Box;
|
||||
permutation1Box.order[0] = 1;
|
||||
permutation1Box.order[1] = 0;
|
||||
permutation1Box.order[2] = 2;
|
||||
shuffle1Box->setSecondTranspose(permutation1Box);
|
||||
box = shuffle1Box->getOutput(0);
|
||||
|
||||
nvinfer1::ISoftMaxLayer* softmax = network->addSoftMax(*box);
|
||||
assert(softmax != nullptr);
|
||||
std::string softmaxLayerName = "softmax_box_" + std::to_string(layerIdx);
|
||||
softmax->setName(softmaxLayerName.c_str());
|
||||
softmax->setAxes(1 << 0);
|
||||
box = softmax->getOutput(0);
|
||||
|
||||
nvinfer1::Weights dflWt {nvinfer1::DataType::kFLOAT, nullptr, reg_max};
|
||||
|
||||
float* val = new float[reg_max];
|
||||
for (int i = 0; i < reg_max; ++i) {
|
||||
val[i] = i;
|
||||
}
|
||||
dflWt.values = val;
|
||||
|
||||
nvinfer1::IConvolutionLayer* conv = network->addConvolutionNd(*box, 1, nvinfer1::Dims{2, {1, 1}}, dflWt,
|
||||
nvinfer1::Weights{});
|
||||
assert(conv != nullptr);
|
||||
std::string convLayerName = "conv_box_" + std::to_string(layerIdx);
|
||||
conv->setName(convLayerName.c_str());
|
||||
conv->setStrideNd(nvinfer1::Dims{2, {1, 1}});
|
||||
conv->setPaddingNd(nvinfer1::Dims{2, {0, 0}});
|
||||
box = conv->getOutput(0);
|
||||
|
||||
nvinfer1::IShuffleLayer* shuffle2Box = network->addShuffle(*box);
|
||||
assert(shuffle2Box != nullptr);
|
||||
std::string shuffle2BoxLayerName = "shuffle2_box_" + std::to_string(layerIdx);
|
||||
shuffle2Box->setName(shuffle2BoxLayerName.c_str());
|
||||
nvinfer1::Dims reshape2Dims = {2, {4, inputDims.d[1]}};
|
||||
shuffle2Box->setReshapeDimensions(reshape2Dims);
|
||||
box = shuffle2Box->getOutput(0);
|
||||
|
||||
nvinfer1::Dims shuffle2BoxDims = box->getDimensions();
|
||||
|
||||
nvinfer1::ISliceLayer* sliceLtBox = network->addSlice(*box, nvinfer1::Dims{2, {0, 0}},
|
||||
nvinfer1::Dims{2, {2, shuffle2BoxDims.d[1]}}, nvinfer1::Dims{2, {1, 1}});
|
||||
assert(sliceLtBox != nullptr);
|
||||
std::string sliceLtBoxLayerName = "slice_lt_box_" + std::to_string(layerIdx);
|
||||
sliceLtBox->setName(sliceLtBoxLayerName.c_str());
|
||||
nvinfer1::ITensor* lt = sliceLtBox->getOutput(0);
|
||||
|
||||
nvinfer1::ISliceLayer* sliceRbBox = network->addSlice(*box, nvinfer1::Dims{2, {2, 0}},
|
||||
nvinfer1::Dims{2, {2, shuffle2BoxDims.d[1]}}, nvinfer1::Dims{2, {1, 1}});
|
||||
assert(sliceRbBox != nullptr);
|
||||
std::string sliceRbBoxLayerName = "slice_rb_box_" + std::to_string(layerIdx);
|
||||
sliceRbBox->setName(sliceRbBoxLayerName.c_str());
|
||||
nvinfer1::ITensor* rb = sliceRbBox->getOutput(0);
|
||||
|
||||
int channels = 2 * shuffle2BoxDims.d[1];
|
||||
nvinfer1::Weights anchorPointsWt {nvinfer1::DataType::kFLOAT, nullptr, channels};
|
||||
val = new float[channels];
|
||||
for (int i = 0; i < channels; ++i) {
|
||||
val[i] = weights[weightPtr];
|
||||
++weightPtr;
|
||||
}
|
||||
anchorPointsWt.values = val;
|
||||
trtWeights.push_back(anchorPointsWt);
|
||||
|
||||
nvinfer1::IConstantLayer* anchorPoints = network->addConstant(nvinfer1::Dims{2, {2, shuffle2BoxDims.d[1]}},
|
||||
anchorPointsWt);
|
||||
assert(anchorPoints != nullptr);
|
||||
std::string anchorPointsLayerName = "anchor_points_" + std::to_string(layerIdx);
|
||||
anchorPoints->setName(anchorPointsLayerName.c_str());
|
||||
nvinfer1::ITensor* anchorPointsTensor = anchorPoints->getOutput(0);
|
||||
|
||||
nvinfer1::IElementWiseLayer* x1y1 = network->addElementWise(*anchorPointsTensor, *lt,
|
||||
nvinfer1::ElementWiseOperation::kSUB);
|
||||
assert(x1y1 != nullptr);
|
||||
std::string x1y1LayerName = "x1y1_" + std::to_string(layerIdx);
|
||||
x1y1->setName(x1y1LayerName.c_str());
|
||||
nvinfer1::ITensor* x1y1Tensor = x1y1->getOutput(0);
|
||||
|
||||
nvinfer1::IElementWiseLayer* x2y2 = network->addElementWise(*rb, *anchorPointsTensor,
|
||||
nvinfer1::ElementWiseOperation::kSUM);
|
||||
assert(x2y2 != nullptr);
|
||||
std::string x2y2LayerName = "x2y2_" + std::to_string(layerIdx);
|
||||
x2y2->setName(x2y2LayerName.c_str());
|
||||
nvinfer1::ITensor* x2y2Tensor = x2y2->getOutput(0);
|
||||
|
||||
std::vector<nvinfer1::ITensor*> concatBoxInputs;
|
||||
concatBoxInputs.push_back(x1y1Tensor);
|
||||
concatBoxInputs.push_back(x2y2Tensor);
|
||||
|
||||
nvinfer1::IConcatenationLayer* concatBox = network->addConcatenation(concatBoxInputs.data(), concatBoxInputs.size());
|
||||
assert(concatBox != nullptr);
|
||||
std::string concatBoxLayerName = "concat_box_" + std::to_string(layerIdx);
|
||||
concatBox->setName(concatBoxLayerName.c_str());
|
||||
concatBox->setAxis(0);
|
||||
box = concatBox->getOutput(0);
|
||||
|
||||
channels = shuffle2BoxDims.d[1];
|
||||
nvinfer1::Weights stridePointsWt {nvinfer1::DataType::kFLOAT, nullptr, channels};
|
||||
val = new float[channels];
|
||||
for (int i = 0; i < channels; ++i) {
|
||||
val[i] = weights[weightPtr];
|
||||
++weightPtr;
|
||||
}
|
||||
stridePointsWt.values = val;
|
||||
trtWeights.push_back(stridePointsWt);
|
||||
|
||||
nvinfer1::IConstantLayer* stridePoints = network->addConstant(nvinfer1::Dims{2, {1, shuffle2BoxDims.d[1]}},
|
||||
stridePointsWt);
|
||||
assert(stridePoints != nullptr);
|
||||
std::string stridePointsLayerName = "stride_points_" + std::to_string(layerIdx);
|
||||
stridePoints->setName(stridePointsLayerName.c_str());
|
||||
nvinfer1::ITensor* stridePointsTensor = stridePoints->getOutput(0);
|
||||
|
||||
nvinfer1::IElementWiseLayer* pred = network->addElementWise(*box, *stridePointsTensor,
|
||||
nvinfer1::ElementWiseOperation::kPROD);
|
||||
assert(pred != nullptr);
|
||||
std::string predLayerName = "pred_" + std::to_string(layerIdx);
|
||||
pred->setName(predLayerName.c_str());
|
||||
box = pred->getOutput(0);
|
||||
|
||||
nvinfer1::IActivationLayer* sigmoid = network->addActivation(*cls, nvinfer1::ActivationType::kSIGMOID);
|
||||
assert(sigmoid != nullptr);
|
||||
std::string sigmoidLayerName = "sigmoid_cls_" + std::to_string(layerIdx);
|
||||
sigmoid->setName(sigmoidLayerName.c_str());
|
||||
cls = sigmoid->getOutput(0);
|
||||
|
||||
std::vector<nvinfer1::ITensor*> concatInputs;
|
||||
concatInputs.push_back(box);
|
||||
concatInputs.push_back(cls);
|
||||
|
||||
nvinfer1::IConcatenationLayer* concat = network->addConcatenation(concatInputs.data(), concatInputs.size());
|
||||
assert(concat != nullptr);
|
||||
std::string concatLayerName = "concat_" + std::to_string(layerIdx);
|
||||
concat->setName(concatLayerName.c_str());
|
||||
concat->setAxis(0);
|
||||
output = concat->getOutput(0);
|
||||
|
||||
nvinfer1::IShuffleLayer* shuffle = network->addShuffle(*output);
|
||||
assert(shuffle != nullptr);
|
||||
std::string shuffleLayerName = "shuffle_" + std::to_string(layerIdx);
|
||||
shuffle->setName(shuffleLayerName.c_str());
|
||||
nvinfer1::Permutation permutation;
|
||||
permutation.order[0] = 1;
|
||||
permutation.order[1] = 0;
|
||||
shuffle->setFirstTranspose(permutation);
|
||||
output = shuffle->getOutput(0);
|
||||
|
||||
return output;
|
||||
}
|
||||
@@ -1,18 +0,0 @@
|
||||
/*
|
||||
* Created by Marcos Luciano
|
||||
* https://www.github.com/marcoslucianops
|
||||
*/
|
||||
|
||||
#ifndef __DETECT_V8_LAYER_H__
|
||||
#define __DETECT_V8_LAYER_H__
|
||||
|
||||
#include <map>
|
||||
#include <vector>
|
||||
|
||||
#include "NvInfer.h"
|
||||
|
||||
nvinfer1::ITensor* detectV8Layer(int layerIdx, std::map<std::string, std::string>& block, std::vector<float>& weights,
|
||||
std::vector<nvinfer1::Weights>& trtWeights, int& weightPtr, nvinfer1::ITensor* input,
|
||||
nvinfer1::INetworkDefinition* network);
|
||||
|
||||
#endif
|
||||
@@ -13,7 +13,7 @@ implicitLayer(int layerIdx, std::map<std::string, std::string>& block, std::vect
|
||||
{
|
||||
nvinfer1::ITensor* output;
|
||||
|
||||
assert(block.at("type") == "implicit_add" || block.at("type") == "implicit_mul");
|
||||
assert(block.at("type") == "implicit" || block.at("type") == "implicit_add" || block.at("type") == "implicit_mul");
|
||||
assert(block.find("filters") != block.end());
|
||||
|
||||
int filters = std::stoi(block.at("filters"));
|
||||
|
||||
@@ -14,9 +14,10 @@ poolingLayer(int layerIdx, std::map<std::string, std::string>& block, nvinfer1::
|
||||
{
|
||||
nvinfer1::ITensor* output;
|
||||
|
||||
assert(block.at("type") == "maxpool" || block.at("type") == "avgpool");
|
||||
assert(block.at("type") == "max" || block.at("type") == "maxpool" || block.at("type") == "avg" ||
|
||||
block.at("type") == "avgpool");
|
||||
|
||||
if (block.at("type") == "maxpool") {
|
||||
if (block.at("type") == "max" || block.at("type") == "maxpool") {
|
||||
assert(block.find("size") != block.end());
|
||||
assert(block.find("stride") != block.end());
|
||||
|
||||
@@ -36,7 +37,7 @@ poolingLayer(int layerIdx, std::map<std::string, std::string>& block, nvinfer1::
|
||||
}
|
||||
output = maxpool->getOutput(0);
|
||||
}
|
||||
else if (block.at("type") == "avgpool") {
|
||||
else if (block.at("type") == "avg" || block.at("type") == "avgpool") {
|
||||
nvinfer1::Dims inputDims = input->getDimensions();
|
||||
nvinfer1::IPoolingLayer* avgpool = network->addPoolingNd(*input, nvinfer1::PoolingType::kAVERAGE,
|
||||
nvinfer1::Dims{2, {inputDims.d[1], inputDims.d[2]}});
|
||||
|
||||
@@ -1,54 +0,0 @@
|
||||
/*
|
||||
* Created by Marcos Luciano
|
||||
* https://www.github.com/marcoslucianops
|
||||
*/
|
||||
|
||||
#include "reduce_layer.h"
|
||||
|
||||
nvinfer1::ITensor*
|
||||
reduceLayer(int layerIdx, std::map<std::string, std::string>& block, nvinfer1::ITensor* input,
|
||||
nvinfer1::INetworkDefinition* network)
|
||||
{
|
||||
nvinfer1::ITensor* output;
|
||||
|
||||
assert(block.at("type") == "reduce");
|
||||
assert(block.find("mode") != block.end());
|
||||
assert(block.find("axes") != block.end());
|
||||
|
||||
std::string mode = block.at("mode");
|
||||
|
||||
nvinfer1::ReduceOperation operation;
|
||||
if (mode == "mean")
|
||||
operation = nvinfer1::ReduceOperation::kAVG;
|
||||
|
||||
std::string strAxes = block.at("axes");
|
||||
std::vector<int32_t> axes;
|
||||
size_t lastPos = 0, pos = 0;
|
||||
while ((pos = strAxes.find(',', lastPos)) != std::string::npos) {
|
||||
int vL = std::stoi(trim(strAxes.substr(lastPos, pos - lastPos)));
|
||||
axes.push_back(vL);
|
||||
lastPos = pos + 1;
|
||||
}
|
||||
if (lastPos < strAxes.length()) {
|
||||
std::string lastV = trim(strAxes.substr(lastPos));
|
||||
if (!lastV.empty())
|
||||
axes.push_back(std::stoi(lastV));
|
||||
}
|
||||
assert(!axes.empty());
|
||||
|
||||
uint32_t axisMask = 0;
|
||||
for (int axis : axes)
|
||||
axisMask |= 1 << axis;
|
||||
|
||||
bool keepDims = false;
|
||||
if (block.find("keep") != block.end())
|
||||
keepDims = std::stoi(block.at("keep")) == 1 ? true : false;
|
||||
|
||||
nvinfer1::IReduceLayer* reduce = network->addReduce(*input, operation, axisMask, keepDims);
|
||||
assert(reduce != nullptr);
|
||||
std::string reduceLayerName = "reduce_" + std::to_string(layerIdx);
|
||||
reduce->setName(reduceLayerName.c_str());
|
||||
output = reduce->getOutput(0);
|
||||
|
||||
return output;
|
||||
}
|
||||
@@ -1,14 +0,0 @@
|
||||
/*
|
||||
* Created by Marcos Luciano
|
||||
* https://www.github.com/marcoslucianops
|
||||
*/
|
||||
|
||||
#ifndef __REDUCE_LAYER_H__
|
||||
#define __REDUCE_LAYER_H__
|
||||
|
||||
#include "../utils.h"
|
||||
|
||||
nvinfer1::ITensor* reduceLayer(int layerIdx, std::map<std::string, std::string>& block, nvinfer1::ITensor* input,
|
||||
nvinfer1::INetworkDefinition* network);
|
||||
|
||||
#endif
|
||||
@@ -1,109 +0,0 @@
|
||||
/*
|
||||
* Created by Marcos Luciano
|
||||
* https://www.github.com/marcoslucianops
|
||||
*/
|
||||
|
||||
#include "reg_layer.h"
|
||||
|
||||
#include <cassert>
|
||||
|
||||
nvinfer1::ITensor*
|
||||
regLayer(int layerIdx, std::map<std::string, std::string>& block, std::vector<float>& weights,
|
||||
std::vector<nvinfer1::Weights>& trtWeights, int& weightPtr, nvinfer1::ITensor* input,
|
||||
nvinfer1::INetworkDefinition* network)
|
||||
{
|
||||
nvinfer1::ITensor* output;
|
||||
|
||||
assert(block.at("type") == "reg");
|
||||
|
||||
nvinfer1::IShuffleLayer* shuffle = network->addShuffle(*input);
|
||||
assert(shuffle != nullptr);
|
||||
std::string shuffleLayerName = "shuffle_" + std::to_string(layerIdx);
|
||||
shuffle->setName(shuffleLayerName.c_str());
|
||||
nvinfer1::Permutation permutation;
|
||||
permutation.order[0] = 1;
|
||||
permutation.order[1] = 0;
|
||||
shuffle->setFirstTranspose(permutation);
|
||||
output = shuffle->getOutput(0);
|
||||
nvinfer1::Dims shuffleDims = output->getDimensions();
|
||||
|
||||
nvinfer1::ISliceLayer* sliceLt = network->addSlice(*output, nvinfer1::Dims{2, {0, 0}},
|
||||
nvinfer1::Dims{2, {shuffleDims.d[0], 2}}, nvinfer1::Dims{2, {1, 1}});
|
||||
assert(sliceLt != nullptr);
|
||||
std::string sliceLtLayerName = "slice_lt_" + std::to_string(layerIdx);
|
||||
sliceLt->setName(sliceLtLayerName.c_str());
|
||||
nvinfer1::ITensor* lt = sliceLt->getOutput(0);
|
||||
|
||||
nvinfer1::ISliceLayer* sliceRb = network->addSlice(*output, nvinfer1::Dims{2, {0, 2}},
|
||||
nvinfer1::Dims{2, {shuffleDims.d[0], 2}}, nvinfer1::Dims{2, {1, 1}});
|
||||
assert(sliceRb != nullptr);
|
||||
std::string sliceRbLayerName = "slice_rb_" + std::to_string(layerIdx);
|
||||
sliceRb->setName(sliceRbLayerName.c_str());
|
||||
nvinfer1::ITensor* rb = sliceRb->getOutput(0);
|
||||
|
||||
int channels = shuffleDims.d[0] * 2;
|
||||
nvinfer1::Weights anchorPointsWt {nvinfer1::DataType::kFLOAT, nullptr, channels};
|
||||
float* val = new float[channels];
|
||||
for (int i = 0; i < channels; ++i) {
|
||||
val[i] = weights[weightPtr];
|
||||
++weightPtr;
|
||||
}
|
||||
anchorPointsWt.values = val;
|
||||
trtWeights.push_back(anchorPointsWt);
|
||||
|
||||
nvinfer1::IConstantLayer* anchorPoints = network->addConstant(nvinfer1::Dims{2, {shuffleDims.d[0], 2}}, anchorPointsWt);
|
||||
assert(anchorPoints != nullptr);
|
||||
std::string anchorPointsLayerName = "anchor_points_" + std::to_string(layerIdx);
|
||||
anchorPoints->setName(anchorPointsLayerName.c_str());
|
||||
nvinfer1::ITensor* anchorPointsTensor = anchorPoints->getOutput(0);
|
||||
|
||||
nvinfer1::IElementWiseLayer* x1y1 = network->addElementWise(*anchorPointsTensor, *lt,
|
||||
nvinfer1::ElementWiseOperation::kSUB);
|
||||
assert(x1y1 != nullptr);
|
||||
std::string x1y1LayerName = "x1y1_" + std::to_string(layerIdx);
|
||||
x1y1->setName(x1y1LayerName.c_str());
|
||||
nvinfer1::ITensor* x1y1Tensor = x1y1->getOutput(0);
|
||||
|
||||
nvinfer1::IElementWiseLayer* x2y2 = network->addElementWise(*rb, *anchorPointsTensor,
|
||||
nvinfer1::ElementWiseOperation::kSUM);
|
||||
assert(x2y2 != nullptr);
|
||||
std::string x2y2LayerName = "x2y2_" + std::to_string(layerIdx);
|
||||
x2y2->setName(x2y2LayerName.c_str());
|
||||
nvinfer1::ITensor* x2y2Tensor = x2y2->getOutput(0);
|
||||
|
||||
std::vector<nvinfer1::ITensor*> concatInputs;
|
||||
concatInputs.push_back(x1y1Tensor);
|
||||
concatInputs.push_back(x2y2Tensor);
|
||||
|
||||
nvinfer1::IConcatenationLayer* concat = network->addConcatenation(concatInputs.data(), concatInputs.size());
|
||||
assert(concat != nullptr);
|
||||
std::string concatLayerName = "concat_" + std::to_string(layerIdx);
|
||||
concat->setName(concatLayerName.c_str());
|
||||
concat->setAxis(1);
|
||||
output = concat->getOutput(0);
|
||||
|
||||
channels = shuffleDims.d[0];
|
||||
nvinfer1::Weights stridePointsWt {nvinfer1::DataType::kFLOAT, nullptr, channels};
|
||||
val = new float[channels];
|
||||
for (int i = 0; i < channels; ++i) {
|
||||
val[i] = weights[weightPtr];
|
||||
++weightPtr;
|
||||
}
|
||||
stridePointsWt.values = val;
|
||||
trtWeights.push_back(stridePointsWt);
|
||||
|
||||
nvinfer1::IConstantLayer* stridePoints = network->addConstant(nvinfer1::Dims{2, {shuffleDims.d[0], 1}}, stridePointsWt);
|
||||
assert(stridePoints != nullptr);
|
||||
std::string stridePointsLayerName = "stride_points_" + std::to_string(layerIdx);
|
||||
stridePoints->setName(stridePointsLayerName.c_str());
|
||||
nvinfer1::ITensor* stridePointsTensor = stridePoints->getOutput(0);
|
||||
|
||||
nvinfer1::IElementWiseLayer* pred = network->addElementWise(*output, *stridePointsTensor,
|
||||
nvinfer1::ElementWiseOperation::kPROD);
|
||||
assert(pred != nullptr);
|
||||
std::string predLayerName = "pred_" + std::to_string(layerIdx);
|
||||
pred->setName(predLayerName.c_str());
|
||||
output = pred->getOutput(0);
|
||||
|
||||
return output;
|
||||
}
|
||||
@@ -1,18 +0,0 @@
|
||||
/*
|
||||
* Created by Marcos Luciano
|
||||
* https://www.github.com/marcoslucianops
|
||||
*/
|
||||
|
||||
#ifndef __REG_LAYER_H__
|
||||
#define __REG_LAYER_H__
|
||||
|
||||
#include <map>
|
||||
#include <vector>
|
||||
|
||||
#include "NvInfer.h"
|
||||
|
||||
nvinfer1::ITensor* regLayer(int layerIdx, std::map<std::string, std::string>& block, std::vector<float>& weights,
|
||||
std::vector<nvinfer1::Weights>& trtWeights, int& weightPtr, nvinfer1::ITensor* input,
|
||||
nvinfer1::INetworkDefinition* network);
|
||||
|
||||
#endif
|
||||
@@ -14,7 +14,7 @@ reorgLayer(int layerIdx, std::map<std::string, std::string>& block, nvinfer1::IT
|
||||
{
|
||||
nvinfer1::ITensor* output;
|
||||
|
||||
assert(block.at("type") == "reorg");
|
||||
assert(block.at("type") == "reorg3d");
|
||||
|
||||
nvinfer1::Dims inputDims = input->getDimensions();
|
||||
|
||||
|
||||
28
nvdsinfer_custom_impl_Yolo/layers/sam_layer.cpp
Normal file
28
nvdsinfer_custom_impl_Yolo/layers/sam_layer.cpp
Normal file
@@ -0,0 +1,28 @@
|
||||
/*
|
||||
* Created by Marcos Luciano
|
||||
* https://www.github.com/marcoslucianops
|
||||
*/
|
||||
|
||||
#include "sam_layer.h"
|
||||
|
||||
#include <cassert>
|
||||
|
||||
nvinfer1::ITensor*
|
||||
samLayer(int layerIdx, std::string activation, std::map<std::string, std::string>& block, nvinfer1::ITensor* input,
|
||||
nvinfer1::ITensor* samInput, nvinfer1::INetworkDefinition* network)
|
||||
{
|
||||
nvinfer1::ITensor* output;
|
||||
|
||||
assert(block.at("type") == "sam");
|
||||
|
||||
nvinfer1::IElementWiseLayer* sam = network->addElementWise(*input, *samInput, nvinfer1::ElementWiseOperation::kPROD);
|
||||
assert(sam != nullptr);
|
||||
std::string samLayerName = "sam_" + std::to_string(layerIdx);
|
||||
sam->setName(samLayerName.c_str());
|
||||
output = sam->getOutput(0);
|
||||
|
||||
output = activationLayer(layerIdx, activation, output, network);
|
||||
assert(output != nullptr);
|
||||
|
||||
return output;
|
||||
}
|
||||
18
nvdsinfer_custom_impl_Yolo/layers/sam_layer.h
Normal file
18
nvdsinfer_custom_impl_Yolo/layers/sam_layer.h
Normal file
@@ -0,0 +1,18 @@
|
||||
/*
|
||||
* Created by Marcos Luciano
|
||||
* https://www.github.com/marcoslucianops
|
||||
*/
|
||||
|
||||
#ifndef __SAM_LAYER_H__
|
||||
#define __SAM_LAYER_H__
|
||||
|
||||
#include <map>
|
||||
|
||||
#include "NvInfer.h"
|
||||
|
||||
#include "activation_layer.h"
|
||||
|
||||
nvinfer1::ITensor* samLayer(int layerIdx, std::string activation, std::map<std::string, std::string>& block,
|
||||
nvinfer1::ITensor* input, nvinfer1::ITensor* samInput, nvinfer1::INetworkDefinition* network);
|
||||
|
||||
#endif
|
||||
@@ -8,7 +8,7 @@
|
||||
#include <cassert>
|
||||
|
||||
nvinfer1::ITensor*
|
||||
shortcutLayer(int layerIdx, std::string mode, std::string activation, std::string inputVol, std::string shortcutVol,
|
||||
shortcutLayer(int layerIdx, std::string activation, std::string inputVol, std::string shortcutVol,
|
||||
std::map<std::string, std::string>& block, nvinfer1::ITensor* input, nvinfer1::ITensor* shortcutInput,
|
||||
nvinfer1::INetworkDefinition* network)
|
||||
{
|
||||
@@ -16,12 +16,7 @@ shortcutLayer(int layerIdx, std::string mode, std::string activation, std::strin
|
||||
|
||||
assert(block.at("type") == "shortcut");
|
||||
|
||||
nvinfer1::ElementWiseOperation operation = nvinfer1::ElementWiseOperation::kSUM;
|
||||
|
||||
if (mode == "mul")
|
||||
operation = nvinfer1::ElementWiseOperation::kPROD;
|
||||
|
||||
if (mode == "add" && inputVol != shortcutVol) {
|
||||
if (inputVol != shortcutVol) {
|
||||
nvinfer1::ISliceLayer* slice = network->addSlice(*shortcutInput, nvinfer1::Dims{3, {0, 0, 0}}, input->getDimensions(),
|
||||
nvinfer1::Dims{3, {1, 1, 1}});
|
||||
assert(slice != nullptr);
|
||||
@@ -32,7 +27,7 @@ shortcutLayer(int layerIdx, std::string mode, std::string activation, std::strin
|
||||
else
|
||||
output = shortcutInput;
|
||||
|
||||
nvinfer1::IElementWiseLayer* shortcut = network->addElementWise(*input, *output, operation);
|
||||
nvinfer1::IElementWiseLayer* shortcut = network->addElementWise(*input, *output, nvinfer1::ElementWiseOperation::kSUM);
|
||||
assert(shortcut != nullptr);
|
||||
std::string shortcutLayerName = "shortcut_" + std::to_string(layerIdx);
|
||||
shortcut->setName(shortcutLayerName.c_str());
|
||||
|
||||
@@ -12,8 +12,8 @@
|
||||
|
||||
#include "activation_layer.h"
|
||||
|
||||
nvinfer1::ITensor* shortcutLayer(int layerIdx, std::string mode, std::string activation, std::string inputVol,
|
||||
std::string shortcutVol, std::map<std::string, std::string>& block, nvinfer1::ITensor* input,
|
||||
nvinfer1::ITensor* shortcut, nvinfer1::INetworkDefinition* network);
|
||||
nvinfer1::ITensor* shortcutLayer(int layerIdx, std::string activation, std::string inputVol, std::string shortcutVol,
|
||||
std::map<std::string, std::string>& block, nvinfer1::ITensor* input, nvinfer1::ITensor* shortcut,
|
||||
nvinfer1::INetworkDefinition* network);
|
||||
|
||||
#endif
|
||||
|
||||
@@ -1,128 +0,0 @@
|
||||
/*
|
||||
* Created by Marcos Luciano
|
||||
* https://www.github.com/marcoslucianops
|
||||
*/
|
||||
|
||||
#include "shuffle_layer.h"
|
||||
|
||||
nvinfer1::ITensor*
|
||||
shuffleLayer(int layerIdx, std::map<std::string, std::string>& block, nvinfer1::ITensor* input,
|
||||
std::vector<nvinfer1::ITensor*> tensorOutputs, nvinfer1::INetworkDefinition* network)
|
||||
{
|
||||
nvinfer1::ITensor* output;
|
||||
|
||||
assert(block.at("type") == "shuffle");
|
||||
|
||||
nvinfer1::IShuffleLayer* shuffle = network->addShuffle(*input);
|
||||
assert(shuffle != nullptr);
|
||||
std::string shuffleLayerName = "shuffle_" + std::to_string(layerIdx);
|
||||
shuffle->setName(shuffleLayerName.c_str());
|
||||
|
||||
if (block.find("reshape") != block.end()) {
|
||||
nvinfer1::Dims inputTensorDims = input->getDimensions();
|
||||
|
||||
std::string strReshape = block.at("reshape");
|
||||
std::vector<int32_t> reshape;
|
||||
size_t lastPos = 0, pos = 0;
|
||||
while ((pos = strReshape.find(',', lastPos)) != std::string::npos) {
|
||||
std::string V = trim(strReshape.substr(lastPos, pos - lastPos));
|
||||
if (V == "c")
|
||||
reshape.push_back(inputTensorDims.d[0]);
|
||||
else if (V == "ch")
|
||||
reshape.push_back(inputTensorDims.d[0] * inputTensorDims.d[1]);
|
||||
else if (V == "cw")
|
||||
reshape.push_back(inputTensorDims.d[0] * inputTensorDims.d[2]);
|
||||
else if (V == "h")
|
||||
reshape.push_back(inputTensorDims.d[1]);
|
||||
else if (V == "hw")
|
||||
reshape.push_back(inputTensorDims.d[1] * inputTensorDims.d[2]);
|
||||
else if (V == "w")
|
||||
reshape.push_back(inputTensorDims.d[2]);
|
||||
else if (V == "chw")
|
||||
reshape.push_back(inputTensorDims.d[0] * inputTensorDims.d[1] * inputTensorDims.d[2]);
|
||||
else
|
||||
reshape.push_back(std::stoi(V));
|
||||
lastPos = pos + 1;
|
||||
}
|
||||
if (lastPos < strReshape.length()) {
|
||||
std::string lastV = trim(strReshape.substr(lastPos));
|
||||
if (!lastV.empty()) {
|
||||
if (lastV == "c")
|
||||
reshape.push_back(inputTensorDims.d[0]);
|
||||
else if (lastV == "ch")
|
||||
reshape.push_back(inputTensorDims.d[0] * inputTensorDims.d[1]);
|
||||
else if (lastV == "cw")
|
||||
reshape.push_back(inputTensorDims.d[0] * inputTensorDims.d[2]);
|
||||
else if (lastV == "h")
|
||||
reshape.push_back(inputTensorDims.d[1]);
|
||||
else if (lastV == "hw")
|
||||
reshape.push_back(inputTensorDims.d[1] * inputTensorDims.d[2]);
|
||||
else if (lastV == "w")
|
||||
reshape.push_back(inputTensorDims.d[2]);
|
||||
else if (lastV == "chw")
|
||||
reshape.push_back(inputTensorDims.d[0] * inputTensorDims.d[1] * inputTensorDims.d[2]);
|
||||
else
|
||||
reshape.push_back(std::stoi(lastV));
|
||||
}
|
||||
}
|
||||
assert(!reshape.empty());
|
||||
|
||||
nvinfer1::Dims reshapeDims;
|
||||
reshapeDims.nbDims = reshape.size();
|
||||
|
||||
for (uint i = 0; i < reshape.size(); ++i)
|
||||
reshapeDims.d[i] = reshape[i];
|
||||
|
||||
shuffle->setReshapeDimensions(reshapeDims);
|
||||
}
|
||||
|
||||
if (block.find("transpose1") != block.end()) {
|
||||
std::string strTranspose1 = block.at("transpose1");
|
||||
std::vector<int32_t> transpose1;
|
||||
size_t lastPos = 0, pos = 0;
|
||||
while ((pos = strTranspose1.find(',', lastPos)) != std::string::npos) {
|
||||
int vL = std::stoi(trim(strTranspose1.substr(lastPos, pos - lastPos)));
|
||||
transpose1.push_back(vL);
|
||||
lastPos = pos + 1;
|
||||
}
|
||||
if (lastPos < strTranspose1.length()) {
|
||||
std::string lastV = trim(strTranspose1.substr(lastPos));
|
||||
if (!lastV.empty())
|
||||
transpose1.push_back(std::stoi(lastV));
|
||||
}
|
||||
assert(!transpose1.empty());
|
||||
|
||||
nvinfer1::Permutation permutation1;
|
||||
for (uint i = 0; i < transpose1.size(); ++i)
|
||||
permutation1.order[i] = transpose1[i];
|
||||
|
||||
shuffle->setFirstTranspose(permutation1);
|
||||
}
|
||||
|
||||
if (block.find("transpose2") != block.end()) {
|
||||
std::string strTranspose2 = block.at("transpose2");
|
||||
std::vector<int32_t> transpose2;
|
||||
size_t lastPos = 0, pos = 0;
|
||||
while ((pos = strTranspose2.find(',', lastPos)) != std::string::npos) {
|
||||
int vL = std::stoi(trim(strTranspose2.substr(lastPos, pos - lastPos)));
|
||||
transpose2.push_back(vL);
|
||||
lastPos = pos + 1;
|
||||
}
|
||||
if (lastPos < strTranspose2.length()) {
|
||||
std::string lastV = trim(strTranspose2.substr(lastPos));
|
||||
if (!lastV.empty())
|
||||
transpose2.push_back(std::stoi(lastV));
|
||||
}
|
||||
assert(!transpose2.empty());
|
||||
|
||||
nvinfer1::Permutation permutation2;
|
||||
for (uint i = 0; i < transpose2.size(); ++i)
|
||||
permutation2.order[i] = transpose2[i];
|
||||
|
||||
shuffle->setSecondTranspose(permutation2);
|
||||
}
|
||||
|
||||
output = shuffle->getOutput(0);
|
||||
|
||||
return output;
|
||||
}
|
||||
@@ -1,14 +0,0 @@
|
||||
/*
|
||||
* Created by Marcos Luciano
|
||||
* https://www.github.com/marcoslucianops
|
||||
*/
|
||||
|
||||
#ifndef __SHUFFLE_LAYER_H__
|
||||
#define __SHUFFLE_LAYER_H__
|
||||
|
||||
#include "../utils.h"
|
||||
|
||||
nvinfer1::ITensor* shuffleLayer(int layerIdx, std::map<std::string, std::string>& block, nvinfer1::ITensor* input,
|
||||
std::vector<nvinfer1::ITensor*> tensorOutputs, nvinfer1::INetworkDefinition* network);
|
||||
|
||||
#endif
|
||||
@@ -1,29 +0,0 @@
|
||||
/*
|
||||
* Created by Marcos Luciano
|
||||
* https://www.github.com/marcoslucianops
|
||||
*/
|
||||
|
||||
#include "softmax_layer.h"
|
||||
|
||||
#include <cassert>
|
||||
|
||||
nvinfer1::ITensor*
|
||||
softmaxLayer(int layerIdx, std::map<std::string, std::string>& block, nvinfer1::ITensor* input,
|
||||
nvinfer1::INetworkDefinition* network)
|
||||
{
|
||||
nvinfer1::ITensor* output;
|
||||
|
||||
assert(block.at("type") == "softmax");
|
||||
assert(block.find("axes") != block.end());
|
||||
|
||||
int axes = std::stoi(block.at("axes"));
|
||||
|
||||
nvinfer1::ISoftMaxLayer* softmax = network->addSoftMax(*input);
|
||||
assert(softmax != nullptr);
|
||||
std::string softmaxLayerName = "softmax_" + std::to_string(layerIdx);
|
||||
softmax->setName(softmaxLayerName.c_str());
|
||||
softmax->setAxes(1 << axes);
|
||||
output = softmax->getOutput(0);
|
||||
|
||||
return output;
|
||||
}
|
||||
@@ -1,16 +0,0 @@
|
||||
/*
|
||||
* Created by Marcos Luciano
|
||||
* https://www.github.com/marcoslucianops
|
||||
*/
|
||||
|
||||
#ifndef __SOFTMAX_LAYER_H__
|
||||
#define __SOFTMAX_LAYER_H__
|
||||
|
||||
#include <map>
|
||||
|
||||
#include "NvInfer.h"
|
||||
|
||||
nvinfer1::ITensor* softmaxLayer(int layerIdx, std::map<std::string, std::string>& block, nvinfer1::ITensor* input,
|
||||
nvinfer1::INetworkDefinition* network);
|
||||
|
||||
#endif
|
||||
Reference in New Issue
Block a user