Big update
This commit is contained in:
@@ -18,13 +18,14 @@
|
||||
git clone https://github.com/WongKinYiu/yolov7.git
|
||||
cd yolov7
|
||||
pip3 install -r requirements.txt
|
||||
pip3 install onnx onnxsim onnxruntime
|
||||
```
|
||||
|
||||
**NOTE**: It is recommended to use Python virtualenv.
|
||||
|
||||
#### 2. Copy conversor
|
||||
|
||||
Copy the `gen_wts_yoloV7.py` file from `DeepStream-Yolo/utils` directory to the `yolov7` folder.
|
||||
Copy the `export_yoloV7.py` file from `DeepStream-Yolo/utils` directory to the `yolov7` folder.
|
||||
|
||||
#### 3. Download the model
|
||||
|
||||
@@ -34,18 +35,18 @@ Download the `pt` file from [YOLOv7](https://github.com/WongKinYiu/yolov7/releas
|
||||
wget https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7.pt
|
||||
```
|
||||
|
||||
**NOTE**: You can use your custom model, but it is important to keep the YOLO model reference (`yolov7_`) in you `cfg` and `weights`/`wts` filenames to generate the engine correctly.
|
||||
**NOTE**: You can use your custom model.
|
||||
|
||||
#### 4. Reparameterize your model
|
||||
|
||||
[YOLOv7](https://github.com/WongKinYiu/yolov7/releases/) and it's variants can't be directly converted to engine file. Therefore, you will have to reparameterize your model using the code [here](https://github.com/WongKinYiu/yolov7/blob/main/tools/reparameterization.ipynb). Make sure to convert your checkpoints in yolov7 repository, and then save your reparmeterized checkpoints for conversion in the next step.
|
||||
[YOLOv7](https://github.com/WongKinYiu/yolov7/releases/) and its variants cannot be directly converted to engine file. Therefore, you will have to reparameterize your model using the code [here](https://github.com/WongKinYiu/yolov7/blob/main/tools/reparameterization.ipynb). Make sure to convert your custom checkpoints in yolov7 repository, and then save your reparmeterized checkpoints for conversion in the next step.
|
||||
|
||||
#### 5. Convert model
|
||||
|
||||
Generate the `cfg` and `wts` files (example for YOLOv7)
|
||||
Generate the ONNX model file (example for YOLOv7)
|
||||
|
||||
```
|
||||
python3 gen_wts_yoloV7.py -w yolov7.pt
|
||||
python3 export_yoloV7.py -w yolov7.pt --simplify
|
||||
```
|
||||
|
||||
**NOTE**: To convert a P6 model
|
||||
@@ -77,7 +78,7 @@ or
|
||||
|
||||
#### 6. Copy generated files
|
||||
|
||||
Copy the generated `cfg` and `wts` files to the `DeepStream-Yolo` folder.
|
||||
Copy the generated ONNX model file to the `DeepStream-Yolo` folder.
|
||||
|
||||
##
|
||||
|
||||
@@ -130,11 +131,13 @@ Edit the `config_infer_primary_yoloV7.txt` file according to your model (example
|
||||
```
|
||||
[property]
|
||||
...
|
||||
custom-network-config=yolov7.cfg
|
||||
model-file=yolov7.wts
|
||||
onnx-file=yolov7.onnx
|
||||
model-engine-file=yolov7.onnx_b1_gpu0_fp32.engine
|
||||
...
|
||||
num-detected-classes=80
|
||||
...
|
||||
parse-bbox-func-name=NvDsInferParseYolo
|
||||
...
|
||||
```
|
||||
|
||||
##
|
||||
|
||||
Reference in New Issue
Block a user