Big update

This commit is contained in:
Marcos Luciano
2023-05-19 03:05:43 -03:00
parent 68f762d5bd
commit 07feae9509
86 changed files with 1523 additions and 5223 deletions

View File

@@ -1,8 +1,8 @@
# YOLOR usage
**NOTE**: You need to use the main branch of the YOLOR repo to convert the model.
**NOTE**: Select the correct branch of the YOLOR repo before the conversion.
**NOTE**: The cfg file is required.
**NOTE**: The cfg file is required for the main branch.
* [Convert model](#convert-model)
* [Compile the lib](#compile-the-lib)
@@ -20,31 +20,71 @@
git clone https://github.com/WongKinYiu/yolor.git
cd yolor
pip3 install -r requirements.txt
pip3 install onnx onnxsim onnxruntime
```
**NOTE**: It is recommended to use Python virtualenv.
#### 2. Copy conversor
Copy the `gen_wts_yolor.py` file from `DeepStream-Yolo/utils` directory to the `yolor` folder.
Copy the `export_yolor.py` file from `DeepStream-Yolo/utils` directory to the `yolor` folder.
#### 3. Download the model
Download the `pt` file from [YOLOR](https://github.com/WongKinYiu/yolor) repo.
**NOTE**: You can use your custom model, but it is important to keep the YOLO model reference (`yolor_`) in you `cfg` and `weights`/`wts` filenames to generate the engine correctly.
**NOTE**: You can use your custom model.
#### 4. Convert model
Generate the `cfg` and `wts` files (example for YOLOR-CSP)
Generate the ONNX model file
- Main branch
Example for YOLOR-CSP
```
python3 export_yolor.py -w yolor_csp.pt -c cfg/yolor_csp.cfg --simplify
```
- Paper branch
Example for YOLOR-P6
```
python3 export_yolor.py -w yolor-p6.pt --simplify
```
**NOTE**: To convert a P6 model
```
python3 gen_wts_yolor.py -w yolor_csp.pt -c cfg/yolor_csp.cfg
--p6
```
**NOTE**: To change the inference size (defaut: 640)
```
-s SIZE
--size SIZE
-s HEIGHT WIDTH
--size HEIGHT WIDTH
```
Example for 1280
```
-s 1280
```
or
```
-s 1280 1280
```
#### 5. Copy generated files
Copy the generated `cfg` and `wts` files to the `DeepStream-Yolo` folder
Copy the generated ONNX model file to the `DeepStream-Yolo` folder
##
@@ -97,11 +137,13 @@ Edit the `config_infer_primary_yolor.txt` file according to your model (example
```
[property]
...
custom-network-config=yolor_csp.cfg
model-file=yolor_csp.wts
onnx-file=yolor_csp.onnx
model-engine-file=yolor_csp.onnx_b1_gpu0_fp32.engine
...
num-detected-classes=80
...
parse-bbox-func-name=NvDsInferParseYolo
...
```
##