Big update
This commit is contained in:
@@ -1,8 +1,8 @@
|
||||
# YOLOR usage
|
||||
|
||||
**NOTE**: You need to use the main branch of the YOLOR repo to convert the model.
|
||||
**NOTE**: Select the correct branch of the YOLOR repo before the conversion.
|
||||
|
||||
**NOTE**: The cfg file is required.
|
||||
**NOTE**: The cfg file is required for the main branch.
|
||||
|
||||
* [Convert model](#convert-model)
|
||||
* [Compile the lib](#compile-the-lib)
|
||||
@@ -20,31 +20,71 @@
|
||||
git clone https://github.com/WongKinYiu/yolor.git
|
||||
cd yolor
|
||||
pip3 install -r requirements.txt
|
||||
pip3 install onnx onnxsim onnxruntime
|
||||
```
|
||||
|
||||
**NOTE**: It is recommended to use Python virtualenv.
|
||||
|
||||
#### 2. Copy conversor
|
||||
|
||||
Copy the `gen_wts_yolor.py` file from `DeepStream-Yolo/utils` directory to the `yolor` folder.
|
||||
Copy the `export_yolor.py` file from `DeepStream-Yolo/utils` directory to the `yolor` folder.
|
||||
|
||||
#### 3. Download the model
|
||||
|
||||
Download the `pt` file from [YOLOR](https://github.com/WongKinYiu/yolor) repo.
|
||||
|
||||
**NOTE**: You can use your custom model, but it is important to keep the YOLO model reference (`yolor_`) in you `cfg` and `weights`/`wts` filenames to generate the engine correctly.
|
||||
**NOTE**: You can use your custom model.
|
||||
|
||||
#### 4. Convert model
|
||||
|
||||
Generate the `cfg` and `wts` files (example for YOLOR-CSP)
|
||||
Generate the ONNX model file
|
||||
|
||||
- Main branch
|
||||
|
||||
Example for YOLOR-CSP
|
||||
|
||||
```
|
||||
python3 export_yolor.py -w yolor_csp.pt -c cfg/yolor_csp.cfg --simplify
|
||||
```
|
||||
|
||||
- Paper branch
|
||||
|
||||
Example for YOLOR-P6
|
||||
|
||||
```
|
||||
python3 export_yolor.py -w yolor-p6.pt --simplify
|
||||
```
|
||||
|
||||
**NOTE**: To convert a P6 model
|
||||
|
||||
```
|
||||
python3 gen_wts_yolor.py -w yolor_csp.pt -c cfg/yolor_csp.cfg
|
||||
--p6
|
||||
```
|
||||
|
||||
**NOTE**: To change the inference size (defaut: 640)
|
||||
|
||||
```
|
||||
-s SIZE
|
||||
--size SIZE
|
||||
-s HEIGHT WIDTH
|
||||
--size HEIGHT WIDTH
|
||||
```
|
||||
|
||||
Example for 1280
|
||||
|
||||
```
|
||||
-s 1280
|
||||
```
|
||||
|
||||
or
|
||||
|
||||
```
|
||||
-s 1280 1280
|
||||
```
|
||||
|
||||
#### 5. Copy generated files
|
||||
|
||||
Copy the generated `cfg` and `wts` files to the `DeepStream-Yolo` folder
|
||||
Copy the generated ONNX model file to the `DeepStream-Yolo` folder
|
||||
|
||||
##
|
||||
|
||||
@@ -97,11 +137,13 @@ Edit the `config_infer_primary_yolor.txt` file according to your model (example
|
||||
```
|
||||
[property]
|
||||
...
|
||||
custom-network-config=yolor_csp.cfg
|
||||
model-file=yolor_csp.wts
|
||||
onnx-file=yolor_csp.onnx
|
||||
model-engine-file=yolor_csp.onnx_b1_gpu0_fp32.engine
|
||||
...
|
||||
num-detected-classes=80
|
||||
...
|
||||
parse-bbox-func-name=NvDsInferParseYolo
|
||||
...
|
||||
```
|
||||
|
||||
##
|
||||
|
||||
Reference in New Issue
Block a user