Big update
This commit is contained in:
@@ -1,5 +1,7 @@
|
||||
# PP-YOLOE / PP-YOLOE+ usage
|
||||
|
||||
**NOTE**: You can use the release/2.6 branch of the PPYOLOE repo to convert all model versions.
|
||||
|
||||
* [Convert model](#convert-model)
|
||||
* [Compile the lib](#compile-the-lib)
|
||||
* [Edit the config_infer_primary_ppyoloe_plus file](#edit-the-config_infer_primary_ppyoloe_plus-file)
|
||||
@@ -12,35 +14,36 @@
|
||||
|
||||
#### 1. Download the PaddleDetection repo and install the requirements
|
||||
|
||||
https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.5/docs/tutorials/INSTALL.md
|
||||
https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.6/docs/tutorials/INSTALL.md
|
||||
|
||||
**NOTE**: It is recommended to use Python virtualenv.
|
||||
|
||||
#### 2. Copy conversor
|
||||
|
||||
Copy the `gen_wts_ppyoloe.py` file from `DeepStream-Yolo/utils` directory to the `PaddleDetection` folder.
|
||||
Copy the `export_ppyoloe.py` file from `DeepStream-Yolo/utils` directory to the `PaddleDetection` folder.
|
||||
|
||||
#### 3. Download the model
|
||||
|
||||
Download the `pdparams` file from [PP-YOLOE](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.5/configs/ppyoloe) releases (example for PP-YOLOE+_s)
|
||||
Download the `pdparams` file from [PP-YOLOE](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.6/configs/ppyoloe) releases (example for PP-YOLOE+_s)
|
||||
|
||||
```
|
||||
wget https://paddledet.bj.bcebos.com/models/ppyoloe_plus_crn_s_80e_coco.pdparams
|
||||
```
|
||||
|
||||
**NOTE**: You can use your custom model, but it is important to keep the YOLO model reference (`ppyoloe_`) in you `cfg` and `weights`/`wts` filenames to generate the engine correctly.
|
||||
**NOTE**: You can use your custom model.
|
||||
|
||||
#### 4. Convert model
|
||||
|
||||
Generate the `cfg` and `wts` files (example for PP-YOLOE+_s)
|
||||
Generate the ONNX model file (example for PP-YOLOE+_s)
|
||||
|
||||
```
|
||||
python3 gen_wts_ppyoloe.py -w ppyoloe_plus_crn_s_80e_coco.pdparams -c configs/ppyoloe/ppyoloe_plus_crn_s_80e_coco.yml
|
||||
pip3 install onnx onnxsim onnxruntime
|
||||
python3 export_ppyoloe.py -w ppyoloe_plus_crn_s_80e_coco.pdparams -c configs/ppyoloe/ppyoloe_plus_crn_s_80e_coco.yml --simplify
|
||||
```
|
||||
|
||||
#### 5. Copy generated files
|
||||
|
||||
Copy the generated `cfg` and `wts` files to the `DeepStream-Yolo` folder.
|
||||
Copy the generated ONNX model file to the `DeepStream-Yolo` folder.
|
||||
|
||||
##
|
||||
|
||||
@@ -93,11 +96,13 @@ Edit the `config_infer_primary_ppyoloe_plus.txt` file according to your model (e
|
||||
```
|
||||
[property]
|
||||
...
|
||||
custom-network-config=ppyoloe_plus_crn_s_80e_coco.cfg
|
||||
model-file=ppyoloe_plus_crn_s_80e_coco.wts
|
||||
onnx-file=ppyoloe_plus_crn_s_80e_coco.onnx
|
||||
model-engine-file=ppyoloe_plus_crn_s_80e_coco.onnx_b1_gpu0_fp32.engine
|
||||
...
|
||||
num-detected-classes=80
|
||||
...
|
||||
parse-bbox-func-name=NvDsInferParseYoloE
|
||||
...
|
||||
```
|
||||
|
||||
**NOTE**: If you use the **legacy** model, you should edit the `config_infer_primary_ppyoloe.txt` file.
|
||||
|
||||
Reference in New Issue
Block a user