New YOLOv5 conversion and support (>= v2.0)

This commit is contained in:
Marcos Luciano
2022-07-14 11:50:55 -03:00
parent 095696a296
commit 058db92ad1
15 changed files with 763 additions and 502 deletions

View File

@@ -2,8 +2,8 @@
gpu-id=0
net-scale-factor=0.0039215697906911373
model-color-format=0
custom-network-config=yolov5n.cfg
model-file=yolov5n.wts
custom-network-config=yolov5s.cfg
model-file=yolov5s.wts
model-engine-file=model_b1_gpu0_fp32.engine
#int8-calib-file=calib.table
labelfile-path=labels.txt

110
docs/YOLOR.md Normal file
View File

@@ -0,0 +1,110 @@
# YOLOR usage
**NOTE**: You need to use the main branch of the YOLOR repo to convert the model.
**NOTE**: The cfg is required.
* [Convert model](#convert-model)
* [Compile the lib](#compile-the-lib)
* [Edit the config_infer_primary_yolor file](#edit-the-config_infer_primary_yolor-file)
* [Edit the deepstream_app_config file](#edit-the-deepstream_app_config-file)
* [Testing the model](#testing-the-model)
##
### Convert model
#### 1. Download the YOLOR repo and install the requirements
```
git clone https://github.com/WongKinYiu/yolor.git
cd yolor
pip3 install -r requirements.txt
```
**NOTE**: It is recommended to use a Python virtualenv.
#### 2. Copy conversor
Copy the `gen_wts_yolor.py` file from `DeepStream-Yolo/utils` directory to the `yolor` folder.
#### 3. Download the model
Download the `pt` file from [YOLOR](https://github.com/WongKinYiu/yolor) repo.
**NOTE**: You can use your custom model, but it is important to keep the YOLO model reference (`yolor_`) in you `cfg` and `weights`/`wts` filenames to generate the engine correctly.
#### 4. Convert model
Generate the `cfg` and `wts` files (example for YOLOR-CSP)
```
python3 gen_wts_yolor.py -w yolor_csp.pt -c cfg/yolor_csp.cfg
```
#### 5. Copy generated files
Copy the generated `cfg` and `wts` files to the `DeepStream-Yolo` folder
##
### Compile the lib
Open the `DeepStream-Yolo` folder and compile the lib
* DeepStream 6.1 on x86 platform
```
CUDA_VER=11.6 make -C nvdsinfer_custom_impl_Yolo
```
* DeepStream 6.0.1 / 6.0 on x86 platform
```
CUDA_VER=11.4 make -C nvdsinfer_custom_impl_Yolo
```
* DeepStream 6.1 on Jetson platform
```
CUDA_VER=11.4 make -C nvdsinfer_custom_impl_Yolo
```
* DeepStream 6.0.1 / 6.0 on Jetson platform
```
CUDA_VER=10.2 make -C nvdsinfer_custom_impl_Yolo
```
##
### Edit the config_infer_primary_yolor file
Edit the `config_infer_primary_yolor.txt` file according to your model (example for YOLOR-CSP)
```
[property]
...
custom-network-config=yolor_csp.cfg
model-file=yolor_csp.wts
...
```
##
### Edit the deepstream_app_config.txt file
```
...
[primary-gie]
...
config-file=config_infer_primary_yolor.txt
```
##
### Testing the model
```
deepstream-app -c deepstream_app_config.txt
```

135
docs/YOLOv5.md Normal file
View File

@@ -0,0 +1,135 @@
# YOLOv5 usage
**NOTE**: You can use the main branch of the YOLOv5 repo to convert all model versions.
**NOTE**: The yaml is not required.
* [Convert model](#convert-model)
* [Compile the lib](#compile-the-lib)
* [Edit the config_infer_primary_yoloV5 file](#edit-the-config_infer_primary_yolov5-file)
* [Edit the deepstream_app_config file](#edit-the-deepstream_app_config-file)
* [Testing the model](#testing-the-model)
##
### Convert model
#### 1. Download the YOLOv5 repo and install the requirements
```
git clone https://github.com/ultralytics/yolov5.git
cd yolov5
pip3 install -r requirements.txt
```
**NOTE**: It is recommended to use a Python virtualenv.
#### 2. Copy conversor
Copy the `gen_wts_yoloV5.py` file from `DeepStream-Yolo/utils` directory to the `yolov5` folder.
#### 3. Download the model
Download the `pt` file from [YOLOv5](https://github.com/ultralytics/yolov5/releases/) releases (example for YOLOv5s 6.1)
```
wget https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5s.pt
```
**NOTE**: You can use your custom model, but it is important to keep the YOLO model reference (`yolov5_`) in you `cfg` and `weights`/`wts` filenames to generate the engine correctly.
#### 4. Convert model
Generate the `cfg` and `wts` files (example for YOLOv5s)
```
python3 gen_wts_yoloV5.py -w yolov5s.pt
```
**NOTE**: To change the inference size (defaut: 640)
```
-s SIZE
--size SIZE
-s HEIGHT WIDTH
--size HEIGHT WIDTH
```
Example for 1280
```
-s 1280
```
or
```
-s 1280 1280
```
#### 5. Copy generated files
Copy the generated `cfg` and `wts` files to the `DeepStream-Yolo` folder.
##
### Compile the lib
Open the `DeepStream-Yolo` folder and compile the lib
* DeepStream 6.1 on x86 platform
```
CUDA_VER=11.6 make -C nvdsinfer_custom_impl_Yolo
```
* DeepStream 6.0.1 / 6.0 on x86 platform
```
CUDA_VER=11.4 make -C nvdsinfer_custom_impl_Yolo
```
* DeepStream 6.1 on Jetson platform
```
CUDA_VER=11.4 make -C nvdsinfer_custom_impl_Yolo
```
* DeepStream 6.0.1 / 6.0 on Jetson platform
```
CUDA_VER=10.2 make -C nvdsinfer_custom_impl_Yolo
```
##
### Edit the config_infer_primary_yoloV5 file
Edit the `config_infer_primary_yoloV5.txt` file according to your model (example for YOLOv5s)
```
[property]
...
custom-network-config=yolov5s.cfg
model-file=yolov5s.wts
...
```
##
### Edit the deepstream_app_config.txt file
```
...
[primary-gie]
...
config-file=config_infer_primary_yoloV5.txt
```
##
### Testing the model
```
deepstream-app -c deepstream_app_config.txt
```

View File

@@ -21,7 +21,7 @@ cd DeepStream-Yolo
#### 3. Copy the `cfg` and `weights`/`wts` files to DeepStream-Yolo folder
**NOTE**: It's important to keep the YOLO model reference (`yolov4_`, `yolov5_`, `yolor_`, etc) in you `cfg` and `weights`/`wts` files to generate the engine correctly.
**NOTE**: It is important to keep the YOLO model reference (`yolov4_`, `yolov5_`, `yolor_`, etc) in you `cfg` and `weights`/`wts` filenames to generate the engine correctly.
##

View File

@@ -28,7 +28,7 @@ cd DeepStream-Yolo
#### 4. Copy the `cfg` and `weights`/`wts` files to each GIE folder
**NOTE**: It's important to keep the YOLO model reference (`yolov4_`, `yolov5_`, `yolor_`, etc) in you `cfg` and `weights`/`wts` files to generate the engine correctly.
**NOTE**: It is important to keep the YOLO model reference (`yolov4_`, `yolov5_`, `yolor_`, etc) in you `cfg` and `weights`/`wts` filenames to generate the engine correctly.
##

View File

@@ -53,6 +53,7 @@ SRCFILES:= nvdsinfer_yolo_engine.cpp \
nvdsparsebbox_Yolo.cpp \
yoloPlugins.cpp \
layers/convolutional_layer.cpp \
layers/batchnorm_layer.cpp \
layers/implicit_layer.cpp \
layers/channels_layer.cpp \
layers/shortcut_layer.cpp \

View File

@@ -12,7 +12,8 @@ nvinfer1::ILayer* activationLayer(
nvinfer1::ITensor* input,
nvinfer1::INetworkDefinition* network)
{
if (activation == "linear") {
if (activation == "linear")
{
// Pass
}
else if (activation == "relu")
@@ -46,8 +47,8 @@ nvinfer1::ILayer* activationLayer(
{
nvinfer1::IActivationLayer* leaky = network->addActivation(
*input, nvinfer1::ActivationType::kLEAKY_RELU);
leaky->setAlpha(0.1);
assert(leaky != nullptr);
leaky->setAlpha(0.1);
std::string leakyLayerName = "leaky_" + std::to_string(layerIdx);
leaky->setName(leakyLayerName.c_str());
output = leaky;
@@ -74,7 +75,7 @@ nvinfer1::ILayer* activationLayer(
std::string tanhLayerName = "tanh_" + std::to_string(layerIdx);
tanh->setName(tanhLayerName.c_str());
nvinfer1::IElementWiseLayer* mish = network->addElementWise(
*tanh->getOutput(0), *input,
*input, *tanh->getOutput(0),
nvinfer1::ElementWiseOperation::kPROD);
assert(mish != nullptr);
std::string mishLayerName = "mish_" + std::to_string(layerIdx);
@@ -89,14 +90,32 @@ nvinfer1::ILayer* activationLayer(
std::string sigmoidLayerName = "sigmoid_" + std::to_string(layerIdx);
sigmoid->setName(sigmoidLayerName.c_str());
nvinfer1::IElementWiseLayer* silu = network->addElementWise(
*sigmoid->getOutput(0), *input,
*input, *sigmoid->getOutput(0),
nvinfer1::ElementWiseOperation::kPROD);
assert(silu != nullptr);
std::string siluLayerName = "silu_" + std::to_string(layerIdx);
silu->setName(siluLayerName.c_str());
output = silu;
}
else {
else if (activation == "hardswish")
{
nvinfer1::IActivationLayer* hard_sigmoid = network->addActivation(
*input, nvinfer1::ActivationType::kHARD_SIGMOID);
assert(hard_sigmoid != nullptr);
hard_sigmoid->setAlpha(1.0 / 6.0);
hard_sigmoid->setBeta(0.5);
std::string hardSigmoidLayerName = "hard_sigmoid_" + std::to_string(layerIdx);
hard_sigmoid->setName(hardSigmoidLayerName.c_str());
nvinfer1::IElementWiseLayer* hard_swish = network->addElementWise(
*input, *hard_sigmoid->getOutput(0),
nvinfer1::ElementWiseOperation::kPROD);
assert(hard_swish != nullptr);
std::string hardSwishLayerName = "hard_swish_" + std::to_string(layerIdx);
hard_swish->setName(hardSwishLayerName.c_str());
output = hard_swish;
}
else
{
std::cerr << "Activation not supported: " << activation << std::endl;
std::abort();
}

View File

@@ -0,0 +1,114 @@
/*
* Created by Marcos Luciano
* https://www.github.com/marcoslucianops
*/
#include <math.h>
#include "batchnorm_layer.h"
nvinfer1::ILayer* batchnormLayer(
int layerIdx,
std::map<std::string, std::string>& block,
std::vector<float>& weights,
std::vector<nvinfer1::Weights>& trtWeights,
int& weightPtr,
std::string weightsType,
float eps,
nvinfer1::ITensor* input,
nvinfer1::INetworkDefinition* network)
{
assert(block.at("type") == "batchnorm");
assert(block.find("filters") != block.end());
int filters = std::stoi(block.at("filters"));
std::string activation = block.at("activation");
std::vector<float> bnBiases;
std::vector<float> bnWeights;
std::vector<float> bnRunningMean;
std::vector<float> bnRunningVar;
if (weightsType == "weights") {
for (int i = 0; i < filters; ++i)
{
bnBiases.push_back(weights[weightPtr]);
weightPtr++;
}
for (int i = 0; i < filters; ++i)
{
bnWeights.push_back(weights[weightPtr]);
weightPtr++;
}
for (int i = 0; i < filters; ++i)
{
bnRunningMean.push_back(weights[weightPtr]);
weightPtr++;
}
for (int i = 0; i < filters; ++i)
{
bnRunningVar.push_back(sqrt(weights[weightPtr] + 1.0e-5));
weightPtr++;
}
}
else {
for (int i = 0; i < filters; ++i)
{
bnWeights.push_back(weights[weightPtr]);
weightPtr++;
}
for (int i = 0; i < filters; ++i)
{
bnBiases.push_back(weights[weightPtr]);
weightPtr++;
}
for (int i = 0; i < filters; ++i)
{
bnRunningMean.push_back(weights[weightPtr]);
weightPtr++;
}
for (int i = 0; i < filters; ++i)
{
bnRunningVar.push_back(sqrt(weights[weightPtr] + eps));
weightPtr++;
}
}
int size = filters;
nvinfer1::Weights shift{nvinfer1::DataType::kFLOAT, nullptr, size};
nvinfer1::Weights scale{nvinfer1::DataType::kFLOAT, nullptr, size};
nvinfer1::Weights power{nvinfer1::DataType::kFLOAT, nullptr, size};
float* shiftWt = new float[size];
for (int i = 0; i < size; ++i)
{
shiftWt[i]
= bnBiases.at(i) - ((bnRunningMean.at(i) * bnWeights.at(i)) / bnRunningVar.at(i));
}
shift.values = shiftWt;
float* scaleWt = new float[size];
for (int i = 0; i < size; ++i)
{
scaleWt[i] = bnWeights.at(i) / bnRunningVar[i];
}
scale.values = scaleWt;
float* powerWt = new float[size];
for (int i = 0; i < size; ++i)
{
powerWt[i] = 1.0;
}
power.values = powerWt;
trtWeights.push_back(shift);
trtWeights.push_back(scale);
trtWeights.push_back(power);
nvinfer1::IScaleLayer* bn = network->addScale(
*input, nvinfer1::ScaleMode::kCHANNEL, shift, scale, power);
assert(bn != nullptr);
std::string bnLayerName = "batch_norm_" + std::to_string(layerIdx);
bn->setName(bnLayerName.c_str());
nvinfer1::ILayer* output = bn;
output = activationLayer(layerIdx, activation, output, output->getOutput(0), network);
assert(output != nullptr);
return output;
}

View File

@@ -0,0 +1,27 @@
/*
* Created by Marcos Luciano
* https://www.github.com/marcoslucianops
*/
#ifndef __BATCHNORM_LAYER_H__
#define __BATCHNORM_LAYER_H__
#include <map>
#include <vector>
#include "NvInfer.h"
#include "activation_layer.h"
nvinfer1::ILayer* batchnormLayer(
int layerIdx,
std::map<std::string, std::string>& block,
std::vector<float>& weights,
std::vector<nvinfer1::Weights>& trtWeights,
int& weightPtr,
std::string weightsType,
float eps,
nvinfer1::ITensor* input,
nvinfer1::INetworkDefinition* network);
#endif

View File

@@ -44,6 +44,11 @@ nvinfer1::ILayer* convolutionalLayer(
groups = std::stoi(block.at("groups"));
}
if (block.find("bias") != block.end())
{
bias = std::stoi(block.at("bias"));
}
int pad;
if (padding)
pad = (kernelSize - 1) / 2;
@@ -61,7 +66,9 @@ nvinfer1::ILayer* convolutionalLayer(
if (weightsType == "weights") {
if (batchNormalize == false)
{
float* val = new float[filters];
float* val;
if (bias != 0) {
val = new float[filters];
for (int i = 0; i < filters; ++i)
{
val[i] = weights[weightPtr];
@@ -69,6 +76,7 @@ nvinfer1::ILayer* convolutionalLayer(
}
convBias.values = val;
trtWeights.push_back(convBias);
}
val = new float[size];
for (int i = 0; i < size; ++i)
{
@@ -108,6 +116,7 @@ nvinfer1::ILayer* convolutionalLayer(
}
convWt.values = val;
trtWeights.push_back(convWt);
if (bias != 0)
trtWeights.push_back(convBias);
}
}
@@ -122,6 +131,7 @@ nvinfer1::ILayer* convolutionalLayer(
}
convWt.values = val;
trtWeights.push_back(convWt);
if (bias != 0) {
val = new float[filters];
for (int i = 0; i < filters; ++i)
{
@@ -131,6 +141,7 @@ nvinfer1::ILayer* convolutionalLayer(
convBias.values = val;
trtWeights.push_back(convBias);
}
}
else
{
float* val = new float[size];
@@ -161,6 +172,7 @@ nvinfer1::ILayer* convolutionalLayer(
weightPtr++;
}
trtWeights.push_back(convWt);
if (bias != 0)
trtWeights.push_back(convBias);
}
}

View File

@@ -19,11 +19,11 @@ nvinfer1::ILayer* maxpoolLayer(
int stride = std::stoi(block.at("stride"));
nvinfer1::IPoolingLayer* pool
= network->addPoolingNd(*input, nvinfer1::PoolingType::kMAX, nvinfer1::DimsHW{size, size});
= network->addPoolingNd(*input, nvinfer1::PoolingType::kMAX, nvinfer1::Dims{2, {size, size}});
assert(pool);
std::string maxpoolLayerName = "maxpool_" + std::to_string(layerIdx);
pool->setStrideNd(nvinfer1::DimsHW{stride, stride});
pool->setPaddingMode(nvinfer1::PaddingMode::kSAME_UPPER);
pool->setStrideNd(nvinfer1::Dims{2, {stride, stride}});
pool->setPaddingNd(nvinfer1::Dims{2, {size / 2, size / 2}});
pool->setName(maxpoolLayerName.c_str());
return pool;

View File

@@ -207,6 +207,20 @@ NvDsInferStatus Yolo::buildYoloNetwork(std::vector<float>& weights, nvinfer1::IN
printLayerInfo(layerIndex, layerType, inputVol, outputVol, std::to_string(weightPtr));
}
else if (m_ConfigBlocks.at(i).at("type") == "batchnorm")
{
std::string inputVol = dimsToString(previous->getDimensions());
nvinfer1::ILayer* out = batchnormLayer(
i, m_ConfigBlocks.at(i), weights, m_TrtWeights, weightPtr, weightsType, eps, previous, &network);
previous = out->getOutput(0);
assert(previous != nullptr);
channels = getNumChannels(previous);
std::string outputVol = dimsToString(previous->getDimensions());
tensorOutputs.push_back(previous);
std::string layerType = "bn_" + m_ConfigBlocks.at(i).at("activation");
printLayerInfo(layerIndex, layerType, inputVol, outputVol, std::to_string(weightPtr));
}
else if (m_ConfigBlocks.at(i).at("type") == "implicit_add" || m_ConfigBlocks.at(i).at("type") == "implicit_mul")
{
std::string type;

View File

@@ -27,6 +27,7 @@
#define _YOLO_H_
#include "layers/convolutional_layer.h"
#include "layers/batchnorm_layer.h"
#include "layers/implicit_layer.h"
#include "layers/channels_layer.h"
#include "layers/shortcut_layer.h"

201
readme.md
View File

@@ -9,24 +9,25 @@ NVIDIA DeepStream SDK 6.1 / 6.0.1 / 6.0 configuration for YOLO models
* YOLOX support
* PP-YOLO support
* YOLOv6 support
* YOLOv7 support
* Dynamic batch-size
### Improvements on this repository
* Darknet cfg params parser (no need to edit `nvdsparsebbox_Yolo.cpp` or other files)
* Support for `new_coords`, `beta_nms` and `scale_x_y` params
* Support for `new_coords` and `scale_x_y` params
* Support for new models
* Support for new layers
* Support for new activations
* Support for convolutional groups
* Support for INT8 calibration
* Support for non square models
* Support for `reorg`, `implicit` and `channel` layers (YOLOR)
* YOLOv5 4.0, 5.0, 6.0 and 6.1 support
* YOLOR support
* **GPU YOLO Decoder (moved from CPU to GPU to get better performance)** [#138](https://github.com/marcoslucianops/DeepStream-Yolo/issues/138)
* New documentation for multiple models
* **YOLOv5 >= 2.0 support**
* **YOLOR support**
* **GPU YOLO Decoder** [#138](https://github.com/marcoslucianops/DeepStream-Yolo/issues/138)
* **GPU Batched NMS** [#142](https://github.com/marcoslucianops/DeepStream-Yolo/issues/142)
* **New documentation for multiple models**
* **New YOLOv5 conversion**
##
@@ -37,10 +38,10 @@ NVIDIA DeepStream SDK 6.1 / 6.0.1 / 6.0 configuration for YOLO models
* [Benchmarks](#benchmarks)
* [dGPU installation](#dgpu-installation)
* [Basic usage](#basic-usage)
* [YOLOv5 usage](#yolov5-usage)
* [YOLOR usage](#yolor-usage)
* [NMS configuration](#nms-configuration)
* [INT8 calibration](#int8-calibration)
* [YOLOv5 usage](#docs/YOLOv5.md)
* [YOLOR usage](#docs/YOLOR.md)
* [Using your custom model](docs/customModels.md)
* [Multiple YOLO GIEs](docs/multipleGIEs.md)
@@ -95,7 +96,7 @@ NVIDIA DeepStream SDK 6.1 / 6.0.1 / 6.0 configuration for YOLO models
### Tested models
* [Darknet YOLO](https://github.com/AlexeyAB/darknet)
* [YOLOv5 4.0, 5.0, 6.0 and 6.1](https://github.com/ultralytics/yolov5)
* [YOLOv5 >= 2.0](https://github.com/ultralytics/yolov5)
* [YOLOR](https://github.com/WongKinYiu/yolor)
* [MobileNet-YOLO](https://github.com/dog-qiuqiu/MobileNet-Yolo)
* [YOLO-Fastest](https://github.com/dog-qiuqiu/Yolo-Fastest)
@@ -448,188 +449,6 @@ config-file=config_infer_primary_yoloV2.txt
##
### YOLOv5 usage
**NOTE**: Make sure to change the YOLOv5 repo version according to your model version before the conversion.
#### 1. Copy the `gen_wts_yoloV5.py` file from `DeepStream-Yolo/utils` directory to the [YOLOv5](https://github.com/ultralytics/yolov5) folder
#### 2. Open the YOLOv5 folder
#### 3. Download the `pt` file from [YOLOv5](https://github.com/ultralytics/yolov5/releases/) repo (example for YOLOv5n 6.1)
```
wget https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5n.pt
```
#### 4. Generate the `cfg` and `wts` files (example for YOLOv5n)
```
python3 gen_wts_yoloV5.py -w yolov5n.pt -c models/yolov5n.yaml
```
#### 5. Copy the generated `cfg` and `wts` files to the DeepStream-Yolo folder
#### 6. Open the DeepStream-Yolo folder
#### 7. Compile the lib
* DeepStream 6.1 on x86 platform
```
CUDA_VER=11.6 make -C nvdsinfer_custom_impl_Yolo
```
* DeepStream 6.0.1 / 6.0 on x86 platform
```
CUDA_VER=11.4 make -C nvdsinfer_custom_impl_Yolo
```
* DeepStream 6.1 on Jetson platform
```
CUDA_VER=11.4 make -C nvdsinfer_custom_impl_Yolo
```
* DeepStream 6.0.1 / 6.0 on Jetson platform
```
CUDA_VER=10.2 make -C nvdsinfer_custom_impl_Yolo
```
#### 8. Edit the `config_infer_primary_yoloV5.txt` file according to your model (example for YOLOv5n)
```
[property]
...
custom-network-config=yolov5n.cfg
model-file=yolov5n.wts
...
```
#### 9. Edit the `deepstream_app_config.txt` file
```
...
[primary-gie]
...
config-file=config_infer_primary_yoloV5.txt
```
#### 10. Run
```
deepstream-app -c deepstream_app_config.txt
```
**NOTE**: For YOLOv5 P6, check the `gen_wts_yoloV5.py` file args and set them according to your model.
* Input weights (.pt) file path
```
-w or --weights
```
* Input cfg (.yaml) file path
```
-c or --yaml
```
* Inference size [size] or [height , weight]
Default: 640 / 1280 (if --p6)
```
-s or --size
```
* Example for 1280
```
-s 1280
```
or
```
-s 1280 1280
```
##
### YOLOR usage
#### 1. Copy the `gen_wts_yolor.py` file from `DeepStream-Yolo/utils` directory to the [YOLOR](https://github.com/WongKinYiu/yolor) folder
#### 2. Open the YOLOR folder
#### 3. Download the `pt` file from [YOLOR](https://github.com/WongKinYiu/yolor) repo
#### 4. Generate the `cfg` and `wts` files (example for YOLOR-CSP)
```
python3 gen_wts_yolor.py -w yolor_csp.pt -c cfg/yolor_csp.cfg
```
#### 5. Copy the generated `cfg` and `wts` files to the DeepStream-Yolo folder
#### 6. Open the DeepStream-Yolo folder
#### 7. Compile the lib
* DeepStream 6.1 on x86 platform
```
CUDA_VER=11.6 make -C nvdsinfer_custom_impl_Yolo
```
* DeepStream 6.0.1 / 6.0 on x86 platform
```
CUDA_VER=11.4 make -C nvdsinfer_custom_impl_Yolo
```
* DeepStream 6.1 on Jetson platform
```
CUDA_VER=11.4 make -C nvdsinfer_custom_impl_Yolo
```
* DeepStream 6.0.1 / 6.0 on Jetson platform
```
CUDA_VER=10.2 make -C nvdsinfer_custom_impl_Yolo
```
#### 8. Edit the `config_infer_primary_yolor.txt` file according to your model (example for YOLOR-CSP)
```
[property]
...
custom-network-config=yolor_csp.cfg
model-file=yolor_csp.wts
...
```
#### 9. Edit the `deepstream_app_config.txt` file
```
...
[primary-gie]
...
config-file=config_infer_primary_yolor.txt
```
#### 10. Run
```
deepstream-app -c deepstream_app_config.txt
```
##
### NMS Configuration
To change the `iou-threshold`, `score-threshold` and `topk` values, modify the `config_nms.txt` file and regenerate the model engine file.

View File

@@ -1,108 +1,305 @@
import argparse
import yaml
import math
import os
import struct
import torch
from utils.torch_utils import select_device
class YoloLayers():
def get_route(self, n, layers):
route = 0
for i, layer in enumerate(layers):
if i <= n:
route += layer[1]
else:
break
return route
class Layers(object):
def __init__(self, n, size, fw, fc):
self.blocks = [0 for _ in range(n)]
self.current = 0
def route(self, layers=''):
return '\n[route]\n' + \
'layers=%s\n' % layers
self.width = size[0] if len(size) == 1 else size[1]
self.height = size[0]
self.num = 0
self.nc = 0
self.anchors = ''
self.masks = []
self.fw = fw
self.fc = fc
self.wc = 0
self.net()
def Focus(self, child):
self.current = child.i
self.fc.write('\n# Focus\n')
self.reorg()
self.convolutional(child.conv)
def Conv(self, child):
self.current = child.i
self.fc.write('\n# Conv\n')
self.convolutional(child)
def BottleneckCSP(self, child):
self.current = child.i
self.fc.write('\n# BottleneckCSP\n')
self.convolutional(child.cv2)
self.route('-2')
self.convolutional(child.cv1)
idx = -3
for m in child.m:
if m.add:
self.convolutional(m.cv1)
self.convolutional(m.cv2)
self.shortcut(-3)
idx -= 3
else:
self.convolutional(m.cv1)
self.convolutional(m.cv2)
idx -= 2
self.convolutional(child.cv3)
self.route('-1, %d' % (idx - 1))
self.batchnorm(child.bn, child.act)
self.convolutional(child.cv4)
def C3(self, child):
self.current = child.i
self.fc.write('\n# C3\n')
self.convolutional(child.cv2)
self.route('-2')
self.convolutional(child.cv1)
idx = -3
for m in child.m:
if m.add:
self.convolutional(m.cv1)
self.convolutional(m.cv2)
self.shortcut(-3)
idx -= 3
else:
self.convolutional(m.cv1)
self.convolutional(m.cv2)
idx -= 2
self.route('-1, %d' % idx)
self.convolutional(child.cv3)
def SPP(self, child):
self.current = child.i
self.fc.write('\n# SPP\n')
self.convolutional(child.cv1)
self.maxpool(child.m[0])
self.route('-2')
self.maxpool(child.m[1])
self.route('-4')
self.maxpool(child.m[2])
self.route('-6, -5, -3, -1')
self.convolutional(child.cv2)
def SPPF(self, child):
self.current = child.i
self.fc.write('\n# SPPF\n')
self.convolutional(child.cv1)
self.maxpool(child.m)
self.maxpool(child.m)
self.maxpool(child.m)
self.route('-4, -3, -2, -1')
self.convolutional(child.cv2)
def Upsample(self, child):
self.current = child.i
self.fc.write('\n# Upsample\n')
self.upsample(child)
def Concat(self, child):
self.current = child.i
self.fc.write('\n# Concat\n')
r = self.get_route(child.f[1])
self.route('-1, %d' % (r - 1))
def Detect(self, child):
self.current = child.i
self.fc.write('\n# Detect\n')
self.get_anchors(child.state_dict(), child.m[0].out_channels)
for i, m in enumerate(child.m):
r = self.get_route(child.f[i])
self.route('%d' % (r - 1))
self.convolutional(m, detect=True)
self.yolo(i)
def net(self):
self.fc.write('[net]\n' +
'width=%d\n' % self.width +
'height=%d\n' % self.height +
'channels=3\n' +
'letter_box=1\n')
def reorg(self):
return '\n[reorg]\n'
self.blocks[self.current] += 1
def shortcut(self, route=-1, activation='linear'):
return '\n[shortcut]\n' + \
'from=%d\n' % route + \
'activation=%s\n' % activation
self.fc.write('\n[reorg]\n')
def maxpool(self, stride=1, size=1):
return '\n[maxpool]\n' + \
'stride=%d\n' % stride + \
'size=%d\n' % size
def convolutional(self, cv, detect=False):
self.blocks[self.current] += 1
def upsample(self, stride=1):
return '\n[upsample]\n' + \
'stride=%d\n' % stride
self.get_state_dict(cv.state_dict())
if cv._get_name() == 'Conv2d':
filters = cv.out_channels
size = cv.kernel_size
stride = cv.stride
pad = cv.padding
groups = cv.groups
bias = cv.bias
bn = False
act = 'linear' if not detect else 'logistic'
else:
filters = cv.conv.out_channels
size = cv.conv.kernel_size
stride = cv.conv.stride
pad = cv.conv.padding
groups = cv.conv.groups
bias = cv.conv.bias
bn = True if hasattr(cv, 'bn') else False
act = self.get_activation(cv.act._get_name()) if hasattr(cv, 'act') else 'linear'
def convolutional(self, bn=False, size=1, stride=1, pad=1, filters=1, groups=1, activation='linear'):
b = 'batch_normalize=1\n' if bn is True else ''
g = 'groups=%d\n' % groups if groups > 1 else ''
return '\n[convolutional]\n' + \
b + \
'filters=%d\n' % filters + \
'size=%d\n' % size + \
'stride=%d\n' % stride + \
'pad=%d\n' % pad + \
g + \
'activation=%s\n' % activation
w = 'bias=0\n' if bias is None and bn is False else ''
def yolo(self, mask='', anchors='', classes=80, num=3):
return '\n[yolo]\n' + \
'mask=%s\n' % mask + \
'anchors=%s\n' % anchors + \
'classes=%d\n' % classes + \
'num=%d\n' % num + \
'scale_x_y=2.0\n' + \
'beta_nms=0.6\n' + \
'new_coords=1\n'
self.fc.write('\n[convolutional]\n' +
b +
'filters=%d\n' % filters +
'size=%s\n' % (size[0] if len(size) == 2 and size[0] == size[1] else str(size)[1:-1]) +
'stride=%s\n' % (stride[0] if len(stride) == 2 and stride[0] == stride[1] else str(stride)[1:-1]) +
'pad=%s\n' % (pad[0] if len(pad) == 2 and pad[0] == pad[1] else str(pad)[1:-1]) +
g +
w +
'activation=%s\n' % act)
def batchnorm(self, bn, act):
self.blocks[self.current] += 1
self.get_state_dict(bn.state_dict())
filters = bn.num_features
act = self.get_activation(act._get_name())
self.fc.write('\n[batchnorm]\n' +
'filters=%d\n' % filters +
'activation=%s\n' % act)
def route(self, layers):
self.blocks[self.current] += 1
self.fc.write('\n[route]\n' +
'layers=%s\n' % layers)
def shortcut(self, r, activation='linear'):
self.blocks[self.current] += 1
self.fc.write('\n[shortcut]\n' +
'from=%d\n' % r +
'activation=%s\n' % activation)
def maxpool(self, m):
self.blocks[self.current] += 1
stride = m.stride
size = m.kernel_size
mode = m.ceil_mode
m = 'maxpool_up' if mode else 'maxpool'
self.fc.write('\n[%s]\n' % m +
'stride=%d\n' % stride +
'size=%d\n' % size)
def upsample(self, child):
self.blocks[self.current] += 1
stride = child.scale_factor
self.fc.write('\n[upsample]\n' +
'stride=%d\n' % stride)
def yolo(self, i):
self.blocks[self.current] += 1
self.fc.write('\n[yolo]\n' +
'mask=%s\n' % self.masks[i] +
'anchors=%s\n' % self.anchors +
'classes=%d\n' % self.nc +
'num=%d\n' % self.num +
'scale_x_y=2.0\n' +
'new_coords=1\n')
def get_state_dict(self, state_dict):
for k, v in state_dict.items():
if 'num_batches_tracked' not in k:
vr = v.reshape(-1).numpy()
self.fw.write('{} {} '.format(k, len(vr)))
for vv in vr:
self.fw.write(' ')
self.fw.write(struct.pack('>f', float(vv)).hex())
self.fw.write('\n')
self.wc += 1
def get_anchors(self, state_dict, out_channels):
anchor_grid = state_dict['anchor_grid']
aa = anchor_grid.reshape(-1).tolist()
am = anchor_grid.tolist()
self.num = (len(aa) / 2)
self.nc = int((out_channels / (self.num / len(am))) - 5)
self.anchors = str(aa)[1:-1]
n = 0
for m in am:
mask = []
for _ in range(len(m)):
mask.append(n)
n += 1
self.masks.append(str(mask)[1:-1])
def get_route(self, n):
r = 0
for i, b in enumerate(self.blocks):
if i <= n:
r += b
else:
break
return r
def get_activation(self, act):
if act == 'Hardswish':
return 'hardswish'
elif act == 'LeakyReLU':
return 'leaky'
elif act == 'SiLU':
return 'silu'
def parse_args():
parser = argparse.ArgumentParser(description='PyTorch YOLOv5 conversion')
parser.add_argument('-w', '--weights', required=True, help='Input weights (.pt) file path (required)')
parser.add_argument('-c', '--yaml', help='Input cfg (.yaml) file path')
parser.add_argument(
'-s', '--size', nargs='+', type=int, default=[640], help='Inference size [H,W] (default [640])')
args = parser.parse_args()
if not os.path.isfile(args.weights):
raise SystemExit('Invalid weights file')
if not args.yaml:
args.yaml = ''
return args.weights, args.yaml, args.size
return args.weights, args.size
def get_width(x, gw, divisor=8):
return int(math.ceil((x * gw) / divisor)) * divisor
def get_depth(x, gd):
if x == 1:
return 1
r = int(round(x * gd))
if x * gd - int(x * gd) == 0.5 and int(x * gd) % 2 == 0:
r -= 1
return max(r, 1)
pt_file, yaml_file, inference_size = parse_args()
pt_file, inference_size = parse_args()
model_name = os.path.basename(pt_file).split('.pt')[0]
wts_file = model_name + '.wts' if 'yolov5' in model_name else 'yolov5_' + model_name + '.wts'
cfg_file = model_name + '.cfg' if 'yolov5' in model_name else 'yolov5_' + model_name + '.cfg'
if yaml_file == '':
yaml_file = 'models/' + model_name + '.yaml'
if not os.path.isfile(yaml_file):
yaml_file = 'models/hub/' + model_name + '.yaml'
if not os.path.isfile(yaml_file):
raise SystemExit('YAML file not found')
elif not os.path.isfile(yaml_file):
raise SystemExit('Invalid YAML file')
device = select_device('cpu')
model = torch.load(pt_file, map_location=device)['model'].float()
@@ -112,217 +309,29 @@ model.model[-1].register_buffer('anchor_grid', anchor_grid)
model.to(device).eval()
nc = 0
anchors = ''
masks = []
with open(wts_file, 'w') as fw, open(cfg_file, 'w') as fc:
layers = Layers(len(model.model), inference_size, fw, fc)
yolo_idx = 0
spp_idx = 0
for k, v in model.state_dict().items():
if 'anchor_grid' in k:
yolo_idx = int(k.split('.')[1])
vr = v.cpu().numpy().tolist()
a = v.reshape(-1).cpu().numpy().astype(float).tolist()
anchors = str(a)[1:-1]
num = 0
for m in vr:
mask = []
for _ in range(len(m)):
mask.append(num)
num += 1
masks.append(mask)
elif '.%d.m.0.weight' % yolo_idx in k:
vr = v.cpu().numpy().tolist()
nc = int((len(vr) / len(masks[0])) - 5)
with open(cfg_file, 'w') as c:
with open(yaml_file, 'r', encoding='utf-8') as f:
c.write('[net]\n')
c.write('width=%d\n' % (inference_size[0] if len(inference_size) == 1 else inference_size[1]))
c.write('height=%d\n' % inference_size[0])
c.write('channels=3\n')
c.write('letter_box=1\n')
depth_multiple = 0
width_multiple = 0
layers = []
yoloLayers = YoloLayers()
f = yaml.load(f, Loader=yaml.FullLoader)
for topic in f:
if topic == 'depth_multiple':
depth_multiple = f[topic]
elif topic == 'width_multiple':
width_multiple = f[topic]
elif topic == 'backbone' or topic == 'head':
for v in f[topic]:
if v[2] == 'Focus':
layer = '\n# Focus\n'
blocks = 0
layer += yoloLayers.reorg()
blocks += 1
layer += yoloLayers.convolutional(bn=True, filters=get_width(v[3][0], width_multiple), size=v[3][1],
activation='silu')
blocks += 1
layers.append([layer, blocks])
if v[2] == 'Conv':
layer = '\n# Conv\n'
blocks = 0
layer += yoloLayers.convolutional(bn=True, filters=get_width(v[3][0], width_multiple), size=v[3][1],
stride=v[3][2], activation='silu')
blocks += 1
layers.append([layer, blocks])
elif v[2] == 'C3':
layer = '\n# C3\n'
blocks = 0
# SPLIT
layer += yoloLayers.convolutional(bn=True, filters=get_width(v[3][0], width_multiple) / 2,
activation='silu')
blocks += 1
layer += yoloLayers.route(layers='-2')
blocks += 1
layer += yoloLayers.convolutional(bn=True, filters=get_width(v[3][0], width_multiple) / 2,
activation='silu')
blocks += 1
# Residual Block
if len(v[3]) == 1 or v[3][1] is True:
for _ in range(get_depth(v[1], depth_multiple)):
layer += yoloLayers.convolutional(bn=True, filters=get_width(v[3][0], width_multiple) / 2,
activation='silu')
blocks += 1
layer += yoloLayers.convolutional(bn=True, filters=get_width(v[3][0], width_multiple) / 2,
size=3, activation='silu')
blocks += 1
layer += yoloLayers.shortcut(route=-3)
blocks += 1
# Merge
layer += yoloLayers.route(layers='-1, -%d' % (3 * get_depth(v[1], depth_multiple) + 3))
blocks += 1
for child in model.model.children():
if child._get_name() == 'Focus':
layers.Focus(child)
elif child._get_name() == 'Conv':
layers.Conv(child)
elif child._get_name() == 'BottleneckCSP':
layers.BottleneckCSP(child)
elif child._get_name() == 'C3':
layers.C3(child)
elif child._get_name() == 'SPP':
layers.SPP(child)
elif child._get_name() == 'SPPF':
layers.SPPF(child)
elif child._get_name() == 'Upsample':
layers.Upsample(child)
elif child._get_name() == 'Concat':
layers.Concat(child)
elif child._get_name() == 'Detect':
layers.Detect(child)
else:
for _ in range(get_depth(v[1], depth_multiple)):
layer += yoloLayers.convolutional(bn=True, filters=get_width(v[3][0], width_multiple) / 2,
activation='silu')
blocks += 1
layer += yoloLayers.convolutional(bn=True, filters=get_width(v[3][0], width_multiple) / 2,
size=3, activation='silu')
blocks += 1
# Merge
layer += yoloLayers.route(layers='-1, -%d' % (2 * get_depth(v[1], depth_multiple) + 3))
blocks += 1
# Transition
layer += yoloLayers.convolutional(bn=True, filters=get_width(v[3][0], width_multiple),
activation='silu')
blocks += 1
layers.append([layer, blocks])
elif v[2] == 'SPP':
spp_idx = len(layers)
layer = '\n# SPP\n'
blocks = 0
layer += yoloLayers.convolutional(bn=True, filters=get_width(v[3][0], width_multiple) / 2,
activation='silu')
blocks += 1
layer += yoloLayers.maxpool(size=v[3][1][0])
blocks += 1
layer += yoloLayers.route(layers='-2')
blocks += 1
layer += yoloLayers.maxpool(size=v[3][1][1])
blocks += 1
layer += yoloLayers.route(layers='-4')
blocks += 1
layer += yoloLayers.maxpool(size=v[3][1][2])
blocks += 1
layer += yoloLayers.route(layers='-6, -5, -3, -1')
blocks += 1
layer += yoloLayers.convolutional(bn=True, filters=get_width(v[3][0], width_multiple),
activation='silu')
blocks += 1
layers.append([layer, blocks])
elif v[2] == 'SPPF':
spp_idx = len(layers)
layer = '\n# SPPF\n'
blocks = 0
layer += yoloLayers.convolutional(bn=True, filters=get_width(v[3][0], width_multiple) / 2,
activation='silu')
blocks += 1
layer += yoloLayers.maxpool(size=v[3][1])
blocks += 1
layer += yoloLayers.maxpool(size=v[3][1])
blocks += 1
layer += yoloLayers.maxpool(size=v[3][1])
blocks += 1
layer += yoloLayers.route(layers='-4, -3, -2, -1')
blocks += 1
layer += yoloLayers.convolutional(bn=True, filters=get_width(v[3][0], width_multiple),
activation='silu')
blocks += 1
layers.append([layer, blocks])
elif v[2] == 'nn.Upsample':
layer = '\n# nn.Upsample\n'
blocks = 0
layer += yoloLayers.upsample(stride=v[3][1])
blocks += 1
layers.append([layer, blocks])
elif v[2] == 'Concat':
route = v[0][1]
route = yoloLayers.get_route(route, layers) if route > 0 else \
yoloLayers.get_route(len(layers) + route, layers)
layer = '\n# Concat\n'
blocks = 0
layer += yoloLayers.route(layers='-1, %d' % (route - 1))
blocks += 1
layers.append([layer, blocks])
elif v[2] == 'Detect':
for i, n in enumerate(v[0]):
route = yoloLayers.get_route(n, layers)
layer = '\n# Detect\n'
blocks = 0
layer += yoloLayers.route(layers='%d' % (route - 1))
blocks += 1
layer += yoloLayers.convolutional(filters=((nc + 5) * len(masks[i])), activation='logistic')
blocks += 1
layer += yoloLayers.yolo(mask=str(masks[i])[1:-1], anchors=anchors, classes=nc, num=num)
blocks += 1
layers.append([layer, blocks])
for layer in layers:
c.write(layer[0])
raise SystemExit('Model not supported')
with open(wts_file, 'w') as f:
wts_write = ''
conv_count = 0
cv1 = ''
cv3 = ''
cv3_idx = 0
for k, v in model.state_dict().items():
if 'num_batches_tracked' not in k and 'anchors' not in k and 'anchor_grid' not in k:
vr = v.reshape(-1).cpu().numpy()
idx = int(k.split('.')[1])
if '.cv1.' in k and '.m.' not in k and idx != spp_idx:
cv1 += '{} {} '.format(k, len(vr))
for vv in vr:
cv1 += ' '
cv1 += struct.pack('>f', float(vv)).hex()
cv1 += '\n'
conv_count += 1
elif cv1 != '' and '.m.' in k:
wts_write += cv1
cv1 = ''
if '.cv3.' in k:
cv3 += '{} {} '.format(k, len(vr))
for vv in vr:
cv3 += ' '
cv3 += struct.pack('>f', float(vv)).hex()
cv3 += '\n'
cv3_idx = idx
conv_count += 1
elif cv3 != '' and cv3_idx != idx:
wts_write += cv3
cv3 = ''
cv3_idx = 0
if '.cv3.' not in k and not ('.cv1.' in k and '.m.' not in k and idx != spp_idx):
wts_write += '{} {} '.format(k, len(vr))
for vv in vr:
wts_write += ' '
wts_write += struct.pack('>f', float(vv)).hex()
wts_write += '\n'
conv_count += 1
f.write('{}\n'.format(conv_count))
f.write(wts_write)
os.system('echo "%d" | cat - %s > temp && mv temp %s' % (layers.wc, wts_file, wts_file))