Files
deepstream/min_repro.py
2025-06-30 14:19:58 -04:00

337 lines
9.6 KiB
Python

import io
import tensorrt as trt
import torch
import torch.nn as nn
import torch.nn.functional as F
class AttentionUsingScaledDotProduct(nn.Module):
"""
An alternative implementation of the Attention layer using `F.scaled_dot_product_attention`, which is ~50% faster,
but doesn't compile correctly when using TensorRT v10.
"""
def __init__(
self,
dim,
num_heads=8,
qkv_bias=False,
qk_scale=None,
attn_drop=0.0,
proj_drop=0.0,
attn_head_dim=None,
):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
if attn_head_dim is not None:
head_dim = attn_head_dim
all_head_dim = head_dim * self.num_heads
self.scale = qk_scale or head_dim**-0.5
self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False)
if qkv_bias:
self.q_bias = nn.Parameter(torch.zeros(all_head_dim))
self.v_bias = nn.Parameter(torch.zeros(all_head_dim))
else:
self.q_bias = None
self.v_bias = None
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(all_head_dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x):
B, N, C = x.shape
qkv_bias = None
if self.q_bias is not None:
qkv_bias = torch.cat(
(
self.q_bias,
torch.zeros_like(self.v_bias, requires_grad=False),
self.v_bias,
)
)
qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias)
qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
q, k, v = qkv.unbind(0)
x = F.scaled_dot_product_attention(
q,
k,
v,
dropout_p=self.attn_drop.p if self.training else 0.0,
scale=self.scale,
)
x = x.transpose(1, 2).reshape(B, N, -1)
x = self.proj(x)
x = self.proj_drop(x)
return x
class ExplicitAttention(nn.Module):
"""
The explicit, original version of the Attention layer from the VideoMAEv2 codebase.
"""
def __init__(
self,
dim,
num_heads=8,
qkv_bias=False,
qk_scale=None,
attn_drop=0.0,
proj_drop=0.0,
attn_head_dim=None,
):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
if attn_head_dim is not None:
head_dim = attn_head_dim
all_head_dim = head_dim * self.num_heads
self.scale = qk_scale or head_dim**-0.5
self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False)
if qkv_bias:
self.q_bias = nn.Parameter(torch.zeros(all_head_dim))
self.v_bias = nn.Parameter(torch.zeros(all_head_dim))
else:
self.q_bias = None
self.v_bias = None
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(all_head_dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x):
B, N, C = x.shape
qkv_bias = None
if self.q_bias is not None:
qkv_bias = torch.cat(
(
self.q_bias,
torch.zeros_like(self.v_bias, requires_grad=False),
self.v_bias,
)
)
qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias)
qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
q, k, v = qkv.unbind(0)
q = q * self.scale
attn = q @ k.transpose(-2, -1)
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, -1)
x = self.proj(x)
x = self.proj_drop(x)
return x
class AttentionUsingMHAForward(nn.Module):
def __init__(
self,
dim,
num_heads=8,
qkv_bias=False,
qk_scale=None,
attn_drop=0.0,
proj_drop=0.0,
attn_head_dim=None,
):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
if attn_head_dim is not None:
head_dim = attn_head_dim
all_head_dim = head_dim * self.num_heads
self.scale = qk_scale or head_dim**-0.5
self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False)
if qkv_bias:
self.q_bias = nn.Parameter(torch.zeros(all_head_dim))
self.v_bias = nn.Parameter(torch.zeros(all_head_dim))
else:
self.q_bias = None
self.v_bias = None
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(all_head_dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x):
B, N, C = x.shape
qkv_bias = None
if self.q_bias is not None:
qkv_bias = torch.cat(
(
self.q_bias,
torch.zeros_like(self.v_bias, requires_grad=False),
self.v_bias,
)
)
qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias)
qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
q, k, v = qkv.unbind(0)
# MHA expects [sequence, batch, embed_dim].
x_t = x.transpose(0, 1) # => [N, B, C]
attn_out, _ = F.multi_head_attention_forward(
x_t,
x_t,
x_t,
embed_dim_to_check=C,
num_heads=self.num_heads,
# Since use_separate_proj_weight=False (default), then according to the docs:
# "in_proj_weight will be used, which is a combination of q_proj_weight, k_proj_weight, v_proj_weight."
in_proj_weight=self.qkv.weight,
in_proj_bias=qkv_bias,
bias_k=None,
bias_v=None,
add_zero_attn=False,
dropout_p=self.attn_drop.p,
out_proj_weight=self.proj.weight,
out_proj_bias=self.proj.bias,
training=self.training,
key_padding_mask=None,
need_weights=False,
attn_mask=None,
)
# Transpose back to [B, N, C].
x = attn_out.transpose(0, 1)
return x
def onnx_to_trt(onnx_bytes: bytes) -> bytes:
TRT_LOGGER = trt.Logger(trt.Logger.INFO)
builder = trt.Builder(TRT_LOGGER)
network = builder.create_network()
parser = trt.OnnxParser(network, TRT_LOGGER)
parser.parse(onnx_bytes)
config = builder.create_builder_config()
config.builder_optimization_level = 0
engine = builder.build_serialized_network(network, config)
return engine
def build_trt_module(model, x):
onnx_bytes = io.BytesIO()
torch.onnx.export(
model,
(x,),
onnx_bytes,
export_params=True,
opset_version=17,
do_constant_folding=True,
input_names=["x"],
output_names=["y"],
)
trt_engine = onnx_to_trt(onnx_bytes.getvalue())
return trt_engine
#@torch.inference_mode()
#def main():
with torch.no_grad():
torch.manual_seed(0)
EMB_DIM = 384
x = torch.rand((6, 1568, EMB_DIM))
explicit_attention = ExplicitAttention(EMB_DIM)
sdpa = AttentionUsingScaledDotProduct(EMB_DIM)
mha_fwd = AttentionUsingMHAForward(EMB_DIM)
# Use the same params for all.
sdpa.load_state_dict(explicit_attention.state_dict())
mha_fwd.load_state_dict(explicit_attention.state_dict())
sdpa_torch_y = sdpa(x)
explicit_attention_torch_y = explicit_attention(x)
mha_fwd_torch_y = mha_fwd(x)
print(
"Torch: [explicit<->sdpa] Is allclose?",
sdpa_torch_y.allclose(explicit_attention_torch_y, atol=0.0001),
)
print(
"Torch: [explicit<->mha_fwd] Is allclose?",
mha_fwd_torch_y.allclose(explicit_attention_torch_y, atol=0.0001),
)
print(
"Torch: [explicit<->sdpa] Total difference:",
(sdpa_torch_y - explicit_attention_torch_y).abs().sum(),
)
print(
"Torch: [explicit<->mha_fwd] Total difference:",
(mha_fwd_torch_y - explicit_attention_torch_y).abs().sum(),
)
assert sdpa_torch_y.allclose(explicit_attention_torch_y, atol=0.0001), "Precheck"
assert mha_fwd_torch_y.allclose(explicit_attention_torch_y, atol=0.0001), "Precheck"
# %%
explicit_attention_trt = build_trt_module(explicit_attention, x)
with open('explicit_attention_trt.trt','wb') as ea:
ea.write(explicit_attention_trt)
sdpa_trt_model = build_trt_module(sdpa, x)
with open('sdpa_trt.trt','wb') as ea:
ea.write(sdpa_trt_model)
mha_fwd_trt_model = build_trt_module(mha_fwd, x)
with open('mha_trt.trt','wb') as ea:
ea.write(mha_fwd_trt_model)
# %%
# %%
explicit_attention_y = explicit_attention_trt(x.cuda())
sdpa_y = sdpa_trt_model(x.cuda())
mha_fwd_y = mha_fwd_trt_model(x.cuda())
print(
"TRT: [explicit<->sdpa] Is allclose?",
sdpa_y.allclose(explicit_attention_y, atol=0.0001),
)
print(
"TRT: [explicit<->sdpa] Total difference:",
(sdpa_y - explicit_attention_y).abs().sum(),
)
print(
"TRT: [explicit<->mha_fwd] Is allclose?",
mha_fwd_y.allclose(explicit_attention_y, atol=0.0001),
)
print(
"TRT: [explicit<->mha_fwd] Total difference:",
(mha_fwd_y - explicit_attention_y).abs().sum(),
)
print("TRT: Explicit Attention:", explicit_attention_y[0, 0, :32])
print("TRT: Scaled Dot Product Attention:", sdpa_y[0, 0, :32])
print("TRT: MHA Forward:", mha_fwd_y[0, 0, :32])
if __name__ == "__main__":
main()