import json import numpy as np #datum = np.load('dump.npz.npy') datum = np.load('dump_so400m.npy') with open('dump.json','r') as rr: js = json.load(rr) emb_dict = dict() for embed in js[1]: fr = embed['frame_number'] vec = embed['vector'] emb_dict[fr] = np.asarray(vec) def cosine_sim(emb_in_1, emb_in_2): emb_in_1 = emb_in_1.astype(np.float32) emb_in_2 = emb_in_2.astype(np.float32) emb1_norm = np.linalg.norm(emb_in_1) emb2_norm = np.linalg.norm(emb_in_2) dot_prod = np.dot(emb_in_1, emb_in_2) similarity = dot_prod/(emb1_norm * emb2_norm) return np.round(emb1_norm,5),np.round( emb2_norm,5), np.round( dot_prod,5),np.round( similarity,5) arr_in_deepstream = np.asarray([y for _,y in emb_dict.items()]) normed = np.divide(datum.T, np.linalg.norm(datum, axis=1)).T print('_________________________') print(len(emb_dict)) print(len(datum)) for fr, emb in emb_dict.items(): emb1 = np.linalg.norm(emb) emb2 = np.linalg.norm(datum[fr]) print( cosine_sim(emb, datum[fr]))