Compare commits

...

2 Commits

Author SHA1 Message Date
faff84dd4c YACWC 2025-07-11 16:30:54 -04:00
74eff0a1fa YACWC 2025-06-30 14:20:08 -04:00
6 changed files with 2414 additions and 332 deletions

1361
' Normal file

File diff suppressed because it is too large Load Diff

1
.gitignore vendored
View File

@@ -5,4 +5,5 @@
*.trt *.trt
*.whl *.whl
*.npy *.npy
*.npz
runs/ runs/

Binary file not shown.

736
js.json Normal file

File diff suppressed because one or more lines are too long

338
ml_run.py
View File

@@ -1,334 +1,8 @@
import sys from model_runner import ModelRunner
mr = ModelRunner()
sys.path.insert(0, "/home/thebears/source/models/yolov7")
import time
from datetime import datetime
import cv2
import numpy as np
from pymediainfo import MediaInfo
import inspect
import open_clip
import sys
import torch
import yaml
from models.experimental import attempt_load
from utils.general import check_img_size, non_max_suppression
from torchvision import transforms
device = torch.device("cuda")
pretrained_name = "webli"
#model_name = "ViT-SO400M-16-SigLIP2-512"
#model_name = 'ViT-SO400M-14-SigLIP-384'
clip_model, _, clip_preprocess_og = open_clip.create_model_and_transforms(
model_name, pretrained=pretrained_name
)
tokenizer = open_clip.get_tokenizer('hf-hub:timm/'+model_name)
labels_list = ["A bird with a brown head and black body", "A bird with a black head and black body"]
text = tokenizer(labels_list, context_length=clip_model.context_length)
import torch.nn.functional as F
with torch.no_grad():
text_features = clip_model.encode_text(text).detach().cpu()
text_features = F.normalize(text_features, dim=-1).detach().cpu()
# %% # %%
mr.init_model_det()
clip_model = clip_model.half().to(device) mr.init_model_clip()
clip_dtype = next(clip_model.parameters()).dtype
clip_img_size = clip_preprocess_og.transforms[0].size
_ = clip_model.encode_image(
torch.rand(1, 3, *clip_img_size, dtype=clip_dtype, device=device)
)
clip_preprocess = transforms.Compose([clip_preprocess_og.transforms[x] for x in [0, 3]])
det_root_path = "/home/thebears/source/model_weights"
det_model_weights_root = os.path.join(det_root_path, "yolov7")
det_model_weights_path = os.path.join(det_model_weights_root, "best.pt")
det_data_yaml_path = os.path.join(det_model_weights_root, "inaturalist.yaml")
det_model = attempt_load(det_model_weights_path, map_location=device)
det_model = det_model.half().to(device)
det_dtype = next(det_model.parameters()).dtype
det_imgsz = 1280
det_stride = int(det_model.stride.max())
det_imgsz = check_img_size(det_imgsz, s=det_stride)
_ = det_model(torch.zeros(1, 3, det_imgsz, det_imgsz, dtype=det_dtype).to(device))
with open(det_data_yaml_path, "r") as ff:
det_model_info = yaml.safe_load(ff)
det_labels = det_model_info["names"]
array_score = clip_array
frame_numbers = [x[0] for x in array_score]
frame_values = [x[1] for x in array_score]
frame_as_tensor = (
torch.from_numpy(np.stack(frame_values)[:, :, :, 0:3])
.to(torch.float16)
.to(device)
.permute([0, 3, 1, 2])
)
def score_frames_det(array_score):
frame_numbers = [x[0] for x in array_score]
frame_values = [x[1] for x in array_score]
frame_as_tensor = (
torch.from_numpy(np.stack(frame_values)[:, :, :, 0:3])
.to(torch.float16)
.to(device)
.permute([0, 3, 1, 2])
)
with torch.no_grad():
frame_for_model = det_vid_preprocess(frame_as_tensor).div(255)[:,[2,1,0],:,:]
det_preds = det_model(frame_for_model)[0]
det_pred_post_nms = non_max_suppression(det_preds,0.25, 0.5)
det_cpu_pred = [x.detach().cpu().numpy() for x in det_pred_post_nms]
# frame_for_clip = clip_preprocess(frame_as_tensor[:,[0,1,2],:,:])
# clip_pred = clip_model.encode_image(frame_for_clip).detach().cpu().numpy()
return {"det": det_cpu_pred, "fr#": frame_numbers}
def score_frames_clip(array_score):
frame_numbers = [x[0] for x in array_score]
frame_values = [x[1] for x in array_score]
frame_as_tensor = (
torch.from_numpy(np.stack(frame_values)[:, :, :, 0:3])
.to(torch.float16)
.to(device)
.permute([0, 3, 1, 2])
)
with torch.no_grad():
# frame_for_model = det_vid_preprocess(frame_as_tensor).div(255)[:,[2,1,0],:,:]
# det_preds = det_model(frame_for_model)[0]
# det_pred_post_nms = non_max_suppression(det_preds,0.25, 0.5)
# det_cpu_pred = [x.detach().cpu().numpy() for x in det_pred_post_nms]
frame_for_clip = clip_preprocess(frame_as_tensor[:,[0,1,2],:,:])
clip_pred = clip_model.encode_image(frame_for_clip).detach().cpu().numpy()
return {"clip": clip_pred, "fr#": frame_numbers}
with torch.no_grad():
frame_for_model = det_vid_preprocess(frame_as_tensor).div(255)[:,[2,1,0],:,:]
det_preds = det_model(frame_for_model)[0]
det_pred_post_nms = non_max_suppression(det_preds,0.25, 0.5)
det_cpu_pred = [x.detach().cpu().numpy() for x in det_pred_post_nms]
frame_for_clip = frame_as_tensor.div(255)
frame_for_clip = clip_preprocess(frame_for_clip[:,(2,1,0),:,:])
clip_pred = clip_model.encode_image(frame_for_clip).detach().cpu().numpy()
score_result = {"det": det_cpu_pred, "clip": clip_pred, "fr#": frame_numbers}
clip_orin = F.normalize(torch.from_numpy(score_result['clip']))
clip_tree = F.normalize(torch.from_numpy(saved_emb))
print(np.dot(clip_tree, clip_orin.T))
mvo = mean_vec_out[0]
ooo = frame_for_clip[0].cpu().numpy()
plt.close('all')
fig = plt.figure()
ax1 = fig.add_subplot(3,2,1)
ax1.imshow(mvo[0])
ax2 = fig.add_subplot(3,2,2)
ax2.imshow(ooo[0])
ax3 = fig.add_subplot(3,2,3)
ax3.imshow(mvo[1])
ax4 = fig.add_subplot(3,2,4)
ax4.imshow(ooo[1])
ax5 = fig.add_subplot(3,2,5)
ax5.imshow(mvo[2])
ax6 = fig.add_subplot(3,2,6)
ax6.imshow(ooo[2])
fig.show()
# %% # %%
scored_results = mr.score_video('/home/thebears/source/ml_code/short.mp4')
print(scored_results)
raw_vec_out
mean_vec_out
# %%
file_to_score = "/home/thebears/source/ml_code/short.mp4"
vec_file = '/home/thebears/source/ml_code/short.npz'
out = np.load(vec_file)
mean_vec_path = '/home/thebears/source/ml_code/as_np_mean.npy'
mean_vec_out = np.load(mean_vec_path)
raw_vec_path = '/home/thebears/source/ml_code/as_np_raw.npy'
raw_vec_out = np.load(raw_vec_path)
saved_fr = list(out['frame_numbers'])
saved_emb = out['embeds']
import numpy as np
def get_video_info(file_path):
file_info = MediaInfo.parse(file_path)
video_info = None
frame_count = 0
if len(file_info.video_tracks) > 0: video_info = file_info.video_tracks[0]
video_info.frame_count = int(video_info.frame_count)
return video_info
video_info = get_video_info(file_to_score)
vid_decoder = "h264parse"
if video_info.format.lower() == "HEVC".lower():
vid_decoder = "h265parse"
gst_cmd = "filesrc location={file_to_score} ! qtdemux name=demux demux.video_0 ! queue ! {vid_decoder} ! nvv4l2decoder ! nvvidconv ! videoscale method=1 add-borders=false ! video/x-raw,width=1280,height=1280 ! appsink sync=false".format(
file_to_score=file_to_score, vid_decoder=vid_decoder
)
# gst_cmd = "filesrc location={file_to_score} ! qtdemux name=demux demux.video_0 ! queue ! {vid_decoder} ! nvv4l2decoder ! nvvidconv ! videoscale method=1 add-borders=false ! appsink sync=false".format(file_to_score=file_to_score, vid_decoder=vid_decoder)
cap_handle = cv2.VideoCapture(gst_cmd, cv2.CAP_GSTREAMER)
target_max = det_imgsz
vid_h = video_info.height
vid_w = video_info.width
if vid_h > vid_w:
target_h = target_max
target_w = target_max * vid_w / vid_h
elif vid_h == vid_w:
target_h = target_max
target_w = target_max
elif vid_h < vid_w:
target_h = target_max * vid_h / vid_w
target_w = target_max
target_h = int(target_h)
target_w = int(target_w)
pad_amt = [None, None, None, None]
if target_w % det_stride != 0:
off = det_stride - target_w % det_stride
new_w = target_w + off
pad_diff = new_w - target_w
pad_left = round(pad_diff / 2)
pad_right = pad_diff - pad_left
pad_amt[0] = pad_left
pad_amt[2] = pad_right
else:
pad_amt[0] = 0
pad_amt[2] = 0
if target_h % det_stride != 0:
off = det_stride - target_h % det_stride
new_h = target_h + off
pad_diff = new_h - target_h
pad_up = round(pad_diff / 2)
pad_down = pad_diff - pad_up
pad_amt[1] = pad_up
pad_amt[3] = pad_down
else:
pad_amt[1] = 0
pad_amt[3] = 0
det_vid_preprocess = transforms.Compose(
[transforms.Resize((target_h, target_w)), transforms.Pad(pad_amt, fill=127)]
)
batch_size = 6
clip_interval = 10
array_score = list()
final_output = dict()
final_output["start_score_time"] = time.time()
final_output["num_frames"] = video_info.frame_count
st = time.time()
frame_numbers = list()
det_results = list()
clip_results = list()
clip_array = list()
for i in range(video_info.frame_count):
success, frame_matrix = cap_handle.read()
clip_array.append((i, frame_matrix))
if not success:
break
array_score.append((i, frame_matrix))
if len(array_score) >= batch_size:
score_result = score_frames(array_score)
det_results.extend(score_result["det"])
clip_results.extend(score_result["clip"])
frame_numbers.extend(score_result["fr#"])
array_score = list()
if not (i % clip_interval):
print('do_clip')
if len(array_score) > 0:
score_result = score_frames(array_score)
det_results.extend(score_result["det"])
clip_results.extend(score_result["clip"])
frame_numbers.extend(score_result["fr#"])
cap_handle.release()
et = time.time()
final_output["end_score_time"] = time.time()
final_output["video"] = {
"w": vid_w,
"h": vid_h,
"path": file_to_score,
"target_w": target_w,
"target_h": target_h,
"pad_amt": pad_amt,
}
try:
final_output['scoring_fps'] = final_output['num_frames']/ (final_output['end_score_time'] - final_output['start_score_time'])
except Exception as e:
pass
final_output['scores'] = list()
for frame_number, frame in zip(frame_numbers, det_results):
cframe_dict = dict()
cframe_dict['frame'] = frame_number
cframe_dict['score_number'] = frame_number
cframe_dict['detections'] = list()
for det in frame:
data = dict()
data['coords'] = [float(x) for x in list(det[0:4])]
data['score'] = float(det[4])
data['idx'] = int(det[5])
try:
data['name'] = det_labels[data['idx']]
except:
data['name'] = 'Code failed'
cframe_dict['detections'].append(data)
final_output['scores'].append(cframe_dict)

310
model_runner.py Normal file
View File

@@ -0,0 +1,310 @@
import sys
sys.path.insert(0, "/home/thebears/source/models/yolov7")
import time
import base64 as b64
from datetime import datetime
import cv2
import numpy as np
import json
from pymediainfo import MediaInfo
import inspect
import open_clip
import sys
import torch
import yaml
from models.experimental import attempt_load
from utils.general import check_img_size, non_max_suppression
from torchvision import transforms
import torch.nn.functional as F
import os
device = torch.device("cuda")
# %%
class ModelRunner:
def __init__(self):
self.pretrained_name = "webli"
self.model_name = "ViT-SO400M-16-SigLIP2-512"
self.det_root_path = "/home/thebears/source/model_weights"
def init_model_clip(self):
if hasattr(self, 'clip_preprocess'):
return
model_name = self.model_name
pretrained_name = self.pretrained_name
clip_model, _, clip_preprocess_og = open_clip.create_model_and_transforms(
model_name, pretrained=pretrained_name
)
tokenizer = open_clip.get_tokenizer("hf-hub:timm/" + model_name)
clip_model = clip_model.half().to(device)
clip_dtype = next(clip_model.parameters()).dtype
clip_img_size = clip_preprocess_og.transforms[0].size
clip_model.encode_image(
torch.rand(1, 3, *clip_img_size, dtype=clip_dtype, device=device))
clip_preprocess = transforms.Compose(
[clip_preprocess_og.transforms[x] for x in [0, 3]]
)
self.clip_model = clip_model
self.clip_preprocess_og = clip_preprocess_og
self.clip_tokenizer = tokenizer
self.clip_dtype = clip_dtype
self.clip_img_size = clip_img_size
self.clip_preprocess = clip_preprocess
def init_model_det(self):
if hasattr(self, 'det_model'):
return
det_root_path = self.det_root_path
det_model_weights_root = os.path.join(det_root_path, "yolov7")
det_model_weights_path = os.path.join(det_model_weights_root, "best.pt")
det_data_yaml_path = os.path.join(det_model_weights_root, "inaturalist.yaml")
det_model = attempt_load(det_model_weights_path, map_location=device)
det_model = det_model.half().to(device)
det_dtype = next(det_model.parameters()).dtype
det_imgsz = 1280
det_stride = int(det_model.stride.max())
det_imgsz = check_img_size(det_imgsz, s=det_stride)
_ = det_model(
torch.zeros(1, 3, det_imgsz, det_imgsz, dtype=det_dtype).to(device)
)
with open(det_data_yaml_path, "r") as ff:
det_model_info = yaml.safe_load(ff)
det_labels = det_model_info["names"]
self.det_dtype = det_dtype
self.det_imgsz = det_imgsz
self.det_stride = det_stride
self.det_model_info = det_model_info
self.det_labels = det_labels
self.det_model = det_model
def get_det_vid_preprocessor(self, vid_h, vid_w):
if not hasattr(self, "_det_vid_preprocessors"):
self._det_vid_preprocessors = dict()
self.curr_det_vid_preprocessor = None
dict_key = (vid_h, vid_w)
det_stride = self.det_stride
if dict_key in self._det_vid_preprocessors:
self.curr_det_vid_preprocessor = self._det_vid_preprocessors[dict_key]
return self.curr_det_vid_preprocessor
target_max = self.det_imgsz
if vid_h > vid_w:
target_h = target_max
target_w = target_max * vid_w / vid_h
elif vid_h == vid_w:
target_h = target_max
target_w = target_max
elif vid_h < vid_w:
target_h = target_max * vid_h / vid_w
target_w = target_max
target_h = int(target_h)
target_w = int(target_w)
pad_amt = [None, None, None, None]
if target_w % det_stride != 0:
off = det_stride - target_w % det_stride
new_w = target_w + off
pad_diff = new_w - target_w
pad_left = round(pad_diff / 2)
pad_right = pad_diff - pad_left
pad_amt[0] = pad_left
pad_amt[2] = pad_right
else:
pad_amt[0] = 0
pad_amt[2] = 0
if target_h % det_stride != 0:
off = det_stride - target_h % det_stride
new_h = target_h + off
pad_diff = new_h - target_h
pad_up = round(pad_diff / 2)
pad_down = pad_diff - pad_up
pad_amt[1] = pad_up
pad_amt[3] = pad_down
else:
pad_amt[1] = 0
pad_amt[3] = 0
det_vid_preprocess = transforms.Compose(
[transforms.Resize((target_h, target_w)), transforms.Pad(pad_amt, fill=127)]
)
self.target_h = target_h
self.target_w = target_w
self.pad_amt = pad_amt
self._det_vid_preprocessors[dict_key] = det_vid_preprocess
self.curr_det_vid_preprocessor = self._det_vid_preprocessors[dict_key]
return self.curr_det_vid_preprocessor
def score_frames_det(self, array_score, det_vid_preprocess=None):
det_model = self.det_model
if det_vid_preprocess is None:
det_vid_preprocess = self.curr_det_vid_preprocessor
frame_numbers = [x[0] for x in array_score]
frame_values = [x[1] for x in array_score]
frame_as_tensor = (
torch.from_numpy(np.stack(frame_values)[:, :, :, 0:3])
.to(torch.float16)
.to(device)
.permute([0, 3, 1, 2])
)
with torch.no_grad():
frame_for_model = det_vid_preprocess(frame_as_tensor).div(255)[
:, [2, 1, 0], :, :
]
det_preds = det_model(frame_for_model)[0]
det_pred_post_nms = non_max_suppression(det_preds, 0.25, 0.5)
det_cpu_pred = [x.detach().cpu().numpy() for x in det_pred_post_nms]
return {"det": det_cpu_pred, "fr#": frame_numbers}
def score_frames_clip(self, clip_array_score):
frame_numbers = [x[0] for x in clip_array_score]
frame_values = [x[1] for x in clip_array_score]
frame_as_tensor = (
torch.from_numpy(np.stack(frame_values)[:, :, :, 0:3])
.to(torch.float16)
.to(device)
.permute([0, 3, 1, 2])
)
with torch.no_grad():
frame_for_clip = self.clip_preprocess(frame_as_tensor[:, [0, 1, 2], :, :])
clip_pred = self.clip_model.encode_image(frame_for_clip).detach().cpu().numpy()
return {"clip": clip_pred, "fr#": frame_numbers}
def get_video_info(self, file_path):
file_info = MediaInfo.parse(file_path)
video_info = None
frame_count = 0
if len(file_info.video_tracks) > 0:
video_info = file_info.video_tracks[0]
video_info.frame_count = int(video_info.frame_count)
return video_info
def score_video(self, file_to_score, batch_size = 6, clip_interval = 10):
video_info = self.get_video_info(file_to_score)
vid_decoder = "h264parse"
if video_info.format.lower() == "HEVC".lower():
vid_decoder = "h265parse"
gst_cmd = "filesrc location={file_to_score} ! qtdemux name=demux demux.video_0 ! queue ! {vid_decoder} ! nvv4l2decoder ! nvvidconv ! videoscale method=1 add-borders=false ! video/x-raw,width=1280,height=1280 ! appsink sync=false".format(
file_to_score=file_to_score, vid_decoder=vid_decoder
)
cap_handle = cv2.VideoCapture(gst_cmd, cv2.CAP_GSTREAMER)
vid_h = video_info.height
vid_w = video_info.width
vid_preprocessor = self.get_det_vid_preprocessor(vid_h, vid_w)
target_w = self.target_w
target_h = self.target_h
pad_amt = self.pad_amt
array_score = list()
final_output = dict()
final_output["start_score_time"] = time.time()
final_output["num_frames"] = video_info.frame_count
st = time.time()
frame_numbers = list()
det_results = list()
clip_results = list()
clip_frame_numbers = list()
clip_array = list()
for i in range(video_info.frame_count):
success, frame_matrix = cap_handle.read()
if not success:
break
array_score.append((i, frame_matrix))
if len(array_score) >= batch_size:
score_result = self.score_frames_det(array_score, det_vid_preprocess = vid_preprocessor)
det_results.extend(score_result["det"])
frame_numbers.extend(score_result["fr#"])
array_score = list()
if not (i % clip_interval):
clip_score_result = self.score_frames_clip([(i, frame_matrix)])
clip_results.extend(clip_score_result["clip"])
clip_frame_numbers.extend(clip_score_result["fr#"])
if len(array_score) > 0:
score_result = self.score_frames_det(array_score, det_vid_preprocess = vid_preprocessor)
det_results.extend(score_result["det"])
frame_numbers.extend(score_result["fr#"])
cap_handle.release()
final_output["end_score_time"] = time.time()
final_output["video"] = {
"w": vid_w,
"h": vid_h,
"path": file_to_score,
"target_w": target_w,
"target_h": target_h,
"pad_amt": pad_amt,
}
try:
final_output["scoring_fps"] = final_output["num_frames"] / (
final_output["end_score_time"] - final_output["start_score_time"]
)
except Exception as e:
pass
final_output["scores"] = list()
clip_results_as_np = np.asarray(clip_results)
for frame_number, frame in zip(frame_numbers, det_results):
cframe_dict = dict()
cframe_dict["frame"] = frame_number
cframe_dict["detections"] = list()
for det in frame:
data = dict()
data["coords"] = [float(x) for x in list(det[0:4])]
data["score"] = float(det[4])
data["idx"] = int(det[5])
try:
data["name"] = det_labels[data["idx"]]
except:
data["name"] = "Code failed"
cframe_dict["detections"].append(data)
final_output["scores"].append(cframe_dict)
emb_dict = dict()
emb_dict["frame_numbers"] = clip_frame_numbers
emb_dict["array_size"] = clip_results_as_np.shape
emb_dict["array_dtype"] = str(clip_results_as_np.dtype)
emb_dict["array_binary"] = b64.b64encode(clip_results_as_np).decode()
final_output["embeds"] = emb_dict
return final_output