From c66dc8b62b953c6953feac643a9536e6b2daa9cd Mon Sep 17 00:00:00 2001 From: thebears Date: Tue, 10 Jun 2025 18:06:09 -0400 Subject: [PATCH] py --- compare.py | 53 +++++ deepstream_obj_det.py | 471 ++++++++++++++++++++++++++++++++++++++++++ try_decode.py | 33 +++ 3 files changed, 557 insertions(+) create mode 100644 compare.py create mode 100755 deepstream_obj_det.py create mode 100644 try_decode.py diff --git a/compare.py b/compare.py new file mode 100644 index 0000000..3da58e7 --- /dev/null +++ b/compare.py @@ -0,0 +1,53 @@ +import numpy as np +import json +datum = np.load('dump.npz.npy') + + +with open('dump.json','r') as rr: + js = json.load(rr) + + +emb_dict = dict() +for embed in js[1]: + fr = embed['frame_number'] + vec = embed['vector'] + emb_dict[fr] = np.asarray(vec) + + + + + +def cosine_sim(emb_in_1, emb_in_2): + emb_in_1 = emb_in_1.astype(np.float32) + emb_in_2 = emb_in_2.astype(np.float32) + emb1_norm = np.linalg.norm(emb_in_1) + emb2_norm = np.linalg.norm(emb_in_2) + dot_prod = np.dot(emb_in_1, emb_in_2) + similarity = dot_prod/(emb1_norm * emb2_norm) + + return np.round(emb1_norm,5),np.round( emb2_norm,5), np.round( dot_prod,5),np.round( similarity,5) + + +arr_in_deepstream = np.asarray([y for _,y in emb_dict.items()]) + +normed = np.divide(datum.T, np.linalg.norm(datum, axis=1)).T +print('_________________________') + +for fr, emb in emb_dict.items(): + emb1 = np.linalg.norm(emb) + emb2 = np.linalg.norm(datum[fr]) +# print( cosine_sim(emb, datum[fr])) + + +print('Deepstream and Actual norm') +print(np.max(np.dot(arr_in_deepstream, normed.T),axis=1)) + +print('_________________________') +for dat in datum: +# print(cosine_sim(dat, datum[0])) + pass + + +#print(cosine_sim(datum[fr], datum[fr+1])) + +#print(cosine_sim(emb_dict[fr], emb_dict[fr+1])) diff --git a/deepstream_obj_det.py b/deepstream_obj_det.py new file mode 100755 index 0000000..6014d15 --- /dev/null +++ b/deepstream_obj_det.py @@ -0,0 +1,471 @@ + +import sys +sys.path.append('/opt/nvidia/deepstream/deepstream/sources/deepstream_python_apps/apps') +import os +import gi +gi.require_version('Gst', '1.0') +from gi.repository import GLib, Gst +from common.platform_info import PlatformInfo +from common.bus_call import bus_call +import numpy as np +import ctypes +import pyds +from functools import partial +from CommonCode.settings import get_logger, LogColorize +import argparse +pfm = LogColorize.watch_and_fix_permissions + +logger = get_logger(__name__,'/var/log/ml_vision_logs/00_watch_and_fix_permissions', stdout=True, systemd=False) + + +target_width = 1280 +target_height = 720 +os.environ.pop("DISPLAY",None) +MUXER_BATCH_TIMEOUT_USEC = 1000000 +def embedder_results_probe(pad,info,u_data, list_add, frame_num = 0): + gst_buffer = info.get_buffer() + if not gst_buffer: + print("Unable to get GstBuffer ") + return + batch_meta = pyds.gst_buffer_get_nvds_batch_meta(hash(gst_buffer)) + l_frame = batch_meta.frame_meta_list + + while l_frame is not None: + try: + # Note that l_frame.data needs a cast to pyds.NvDsFrameMeta + # The casting also keeps ownership of the underlying memory + # in the C code, so the Python garbage collector will leave + # it alone. + frame_meta = pyds.NvDsFrameMeta.cast(l_frame.data) + except StopIteration: + break + + frame_number=frame_meta.frame_num + + + l_user = frame_meta.frame_user_meta_list + while l_user is not None: + try: + # Note that l_user.data needs a cast to pyds.NvDsUserMeta + # The casting also keeps ownership of the underlying memory + # in the C code, so the Python garbage collector will leave + # it alone. + user_meta = pyds.NvDsUserMeta.cast(l_user.data) + except StopIteration: + break + + if ( + user_meta.base_meta.meta_type + != pyds.NvDsMetaType.NVDSINFER_TENSOR_OUTPUT_META + ): + continue + + tensor_meta = pyds.NvDsInferTensorMeta.cast(user_meta.user_meta_data) + + # Boxes in the tensor meta should be in network resolution which is + # found in tensor_meta.network_info. Use this info to scale boxes to + # the input frame resolution. + layers_info = [] + if True: + for i in range(tensor_meta.num_output_layers): + layer = pyds.get_nvds_LayerInfo(tensor_meta, i) + if layer.layerName=='embedding': + + ptr = ctypes.cast(pyds.get_ptr(layer.buffer), ctypes.POINTER(ctypes.c_float)) + num_elements = layer.inferDims.numElements + v = list(np.ctypeslib.as_array(ptr, shape=(num_elements,))) + v = [float(x) for x in v] + + list_add.append({'frame_number':frame_number, 'vector':v}) + + + + + + try: + l_user = l_user.next + except StopIteration: + break + + try: + # indicate inference is performed on the frame + frame_meta.bInferDone = True + l_frame = l_frame.next + except StopIteration: + break + + + return Gst.PadProbeReturn.OK + + + + +def detector_results_probe(pad,info,u_data, list_add, frame_num = 0): + frame_number=0 + num_rects=0 + got_fps = False + + gst_buffer = info.get_buffer() + if not gst_buffer: + print("Unable to get GstBuffer ") + return + + + batch_meta = pyds.gst_buffer_get_nvds_batch_meta(hash(gst_buffer)) + l_frame = batch_meta.frame_meta_list + + while l_frame is not None: + try: + frame_meta = pyds.NvDsFrameMeta.cast(l_frame.data) + except StopIteration: + break + + frame_number=frame_meta.frame_num + l_obj=frame_meta.obj_meta_list + num_rects = frame_meta.num_obj_meta + + l_user = frame_meta.frame_user_meta_list + + + + while l_obj is not None: + try: + # Casting l_obj.data to pyds.NvDsObjectMeta + obj_meta=pyds.NvDsObjectMeta.cast(l_obj.data) + except StopIteration: + break + + # param_extract = ['left','top','width','height'] + # strc = '' + # for param in param_extract: + # strc+=str(getattr(obj_meta.rect_params, param)) + # strc+=' ' + + # target_width +# target_height + score = obj_meta.confidence + label = obj_meta.obj_label + left = obj_meta.rect_params.left + top = obj_meta.rect_params.top + width = obj_meta.rect_params.width + height = obj_meta.rect_params.height + frame_number = frame_number + class_id = obj_meta.class_id + + d_add = {'score':score, 'label':label, 'left':left, 'top':top, 'width':width, 'height':height, 'frame_number':frame_number, 'class_id': class_id} + list_add.append(d_add) + print(frame_number, label, score) + if frame_number % 100 == 0: + str_pr = 'FRAME_PROGRESS: '+pfm(str(frame_number) + '/' + str(frame_num)) + logger.info(str_pr) + + + try: + l_obj=l_obj.next + except StopIteration: + break + + # Update frame rate through this probe + stream_index = "stream{0}".format(frame_meta.pad_index) + + try: + l_frame=l_frame.next + except StopIteration: + break + + return Gst.PadProbeReturn.OK + + + +def cb_newpad(decodebin, decoder_src_pad,data): + print("In cb_newpad\n") + caps=decoder_src_pad.get_current_caps() + if not caps: + caps = decoder_src_pad.query_caps() + gststruct=caps.get_structure(0) + gstname=gststruct.get_name() + source_bin=data + features=caps.get_features(0) + + # Need to check if the pad created by the decodebin is for video and not + # audio. + print("gstname=",gstname) + if(gstname.find("video")!=-1): + # Link the decodebin pad only if decodebin has picked nvidia + # decoder plugin nvdec_*. We do this by checking if the pad caps contain + # NVMM memory features. + print("features=",features) + if features.contains("memory:NVMM"): + # Get the source bin ghost pad + bin_ghost_pad=source_bin.get_static_pad("src") + if not bin_ghost_pad.set_target(decoder_src_pad): + sys.stderr.write("Failed to link decoder src pad to source bin ghost pad\n") + else: + sys.stderr.write(" Error: Decodebin did not pick nvidia decoder plugin.\n") + +def decodebin_child_added(child_proxy,Object,name,user_data): + print("Decodebin child added:", name, "\n") + if(name.find("decodebin") != -1): + Object.connect("child-added",decodebin_child_added,user_data) + + if "source" in name: + source_element = child_proxy.get_by_name("source") + if source_element.find_property('drop-on-latency') != None: + Object.set_property("drop-on-latency", True) + + +def create_source_bin(uri): + print("Creating source bin") + + # Create a source GstBin to abstract this bin's content from the rest of the + # pipeline + bin_name="source-bin-any-format" + print(bin_name) + nbin=Gst.Bin.new(bin_name) + if not nbin: + sys.stderr.write(" Unable to create source bin \n") + + # Source element for reading from the uri. + # We will use decodebin and let it figure out the container format of the + # stream and the codec and plug the appropriate demux and decode plugins. + uri_decode_bin=Gst.ElementFactory.make("uridecodebin", "uri-decode-bin") + if not uri_decode_bin: + sys.stderr.write(" Unable to create uri decode bin \n") + # We set the input uri to the source element + uri_decode_bin.set_property("uri",uri) + # Connect to the "pad-added" signal of the decodebin which generates a + # callback once a new pad for raw data has beed created by the decodebin + uri_decode_bin.connect("pad-added",cb_newpad,nbin) + uri_decode_bin.connect("child-added",decodebin_child_added,nbin) + + # We need to create a ghost pad for the source bin which will act as a proxy + # for the video decoder src pad. The ghost pad will not have a target right + # now. Once the decode bin creates the video decoder and generates the + # cb_newpad callback, we will set the ghost pad target to the video decoder + # src pad. + Gst.Bin.add(nbin,uri_decode_bin) + bin_pad=nbin.add_pad(Gst.GhostPad.new_no_target("src",Gst.PadDirection.SRC)) + if not bin_pad: + sys.stderr.write(" Failed to add ghost pad in source bin \n") + return None + return nbin + + +def run_inference(file_path): + os.environ.pop("DISPLAY",None) + if not file_path.startswith('file://'): + file_path = 'file://'+file_path + + platform_info = PlatformInfo() + Gst.init(None) + + pipeline = Gst.Pipeline() + + streammux = Gst.ElementFactory.make("nvstreammux", "Stream-muxer") + + nugget_detector = Gst.ElementFactory.make("nvinfer", "primary-inference") + nugget_embedder = Gst.ElementFactory.make("nvinfer", "secondary-inference") + + streammux.set_property('width', target_width) + streammux.set_property('height', target_height) + streammux.set_property('batched-push-timeout', MUXER_BATCH_TIMEOUT_USEC) + streammux.set_property('enable-padding',1) + streammux.set_property('batch-size', 4) + + +# nugget_detector.set_property('config-file-path', "/home/thebears/DeepStream-Yolo/detector.txt") + nugget_detector.set_property('config-file-path', "/home/thebears/DeepStream-Yolo/config_infer_primary_yoloV7.txt") + nugget_embedder.set_property('config-file-path', "/home/thebears/DeepStream-Yolo/embedder.txt") + + fakesink1 = Gst.ElementFactory.make("fakesink","fakesink") + fakesink1.set_property('enable-last-sample', 0) + fakesink1.set_property('sync', 0) + pipeline.add(fakesink1) + + fakesink2 = Gst.ElementFactory.make("fakesink","fakesink2") + fakesink2.set_property('enable-last-sample', 0) + fakesink2.set_property('sync', 0) + pipeline.add(fakesink2) + + pipeline.add(streammux) + pipeline.add(nugget_detector) + pipeline.add(nugget_embedder) + + + +# uri_name = 'file:///home/thebears/railing.mp4' +# uri_name = 'file:///home/thebears/railing_00_20250213094806.mp4' + source_file=create_source_bin(file_path) + + pipeline.add(source_file) + + stream_pad = streammux.request_pad_simple("sink_0") + source_pad = source_file.get_static_pad("src") + source_pad.link(stream_pad) + + tee=Gst.ElementFactory.make("tee", "nvsink-tee") + pipeline.add(tee) + + queue1=Gst.ElementFactory.make("queue", "nvtee-que1") + queue2=Gst.ElementFactory.make("queue", "nvtee-que2") + pipeline.add(queue1) + pipeline.add(queue2) + + streammux.link(tee) + + + tee.link(queue1) + tee.link(queue2) + + +# preprocess_detector = Gst.ElementFactory.make("nvdspreprocess","preprocess_detector") +# preprocess_detector.set_property('config-file', "/home/thebears/DeepStream-Yolo/detector_preprocess.txt") +# preprocess_detector.set_property('config-file',pre_file) + + +# preprocess_embedder = Gst.ElementFactory.make("nvdspreprocess","preprocess_embedder") +# preprocess_embedder.set_property('config-file', "/home/thebears/DeepStream-Yolo/embedder_preprocess.txt") +# preprocess_embedder.set_property('config-file',pre_file) + +# pipeline.add(preprocess_detector) +# pipeline.add(preprocess_embedder) + +# queue1.link(preprocess_detector) +# preprocess_detector.link(nugget_detector) + +# queue2.link(preprocess_embedder) +# preprocess_embedder.link(nugget_embedder) + + + queue1.link(nugget_detector) + queue2.link(nugget_embedder) + + + cmd = f'/usr/bin/ffprobe -v error -select_streams v:0 -count_packets -show_entries stream=nb_read_packets -of csv=p=0 {file_path}'#/srv/ftp/railing/2025/02/28/railing_00_20250228115800.mp4 + try: + frames = int(os.popen(cmd).read().strip()) + except: + frames = 0 + + logger.info(f"TOTAL_FRAMES: {frames}") + + embedder_list = list() + + + embedder_results = partial(embedder_results_probe, list_add=embedder_list, frame_num = frames) + nugget_embedder.get_static_pad("src").add_probe(Gst.PadProbeType.BUFFER, embedder_results, 0) + + + detector_list = list() + + + detector_results = partial(detector_results_probe, list_add = detector_list, frame_num = frames) + nugget_detector.get_static_pad("src").add_probe(Gst.PadProbeType.BUFFER, detector_results, 0) + + + + def get_pipeline_string(pipeline): + if not isinstance(pipeline, Gst.Pipeline): + return None + + elements = [] + iterator = pipeline.iterate_elements() + while True: + result, element = iterator.next() + if result != Gst.IteratorResult.OK: + break + elements.append(element.get_name()) + + return " ! ".join(elements) + + nugget_detector.link(fakesink1) + nugget_embedder.link(fakesink2) + + + # create an event loop and feed gstreamer bus mesages to it + loop = GLib.MainLoop() + bus = pipeline.get_bus() + bus.add_signal_watch() + bus.connect ("message", bus_call, loop) + + # start play back and listen to events + print("Starting pipeline \n") + pipeline.set_state(Gst.State.PLAYING) + try: + loop.run() + except: + pass + # cleanup + pipeline.set_state(Gst.State.NULL) + return detector_list, embedder_list + +def get_detailed_pipeline_string(pipeline): + """Generate a more detailed pipeline string with properties""" + if not isinstance(pipeline, Gst.Pipeline): + return None + + def get_element_string(element): + # Get element factory name + factory = element.get_factory() + if factory: + element_str = factory.get_name() + else: + element_str = element.get_name() + + # Add properties + props = [] + for prop in element.list_properties(): + # Skip some properties that are typically not set in command line + if prop.name in ('name', 'parent'): + continue + + try: + val = element.get_property(prop.name) + if val is not None and val != prop.default_value: + # Format value appropriately based on type + if isinstance(val, str): + props.append(f"{prop.name}=\"{val}\"") + elif isinstance(val, bool): + props.append(f"{prop.name}={str(val).lower()}") + else: + props.append(f"{prop.name}={val}") + except: + # Skip properties that can't be read + pass + + if props: + element_str += " " + " ".join(props) + + return element_str + + result = [] + + # Simple approach - just gets top-level elements + iterator = pipeline.iterate_elements() + while True: + ret, element = iterator.next() + if ret != Gst.IteratorResult.OK: + break + result.append(get_element_string(element)) + + return " ! ".join(result) + + + + +if __name__ == '__main__': + cpath = sys.argv[1] + if cpath.endswith('-i'): + cpath = '/home/thebears/local/source/short.mp4' + + if not cpath.startswith('file'): + cpath = os.path.abspath(cpath) + + + out = run_inference(cpath) + + import json + with open('dump.json','w') as ff: + json.dump([out[0],out[1]],ff) + sys.exit() + diff --git a/try_decode.py b/try_decode.py new file mode 100644 index 0000000..94ac97c --- /dev/null +++ b/try_decode.py @@ -0,0 +1,33 @@ + +import cv2 + +#cap = cv2.VideoCapture("rtspsrc location=rtsp://wowzaec2demo.streamlock.net/vod/mp4:BigBuckBunny_115k.mov ! application/x-rtp, media=video ! rtph264depay ! h264parse ! nvv4l2decoder ! nvvidconv ! video/x-raw, format=BGRx ! videoconvert ! video/x-raw, format=BGR ! appsink", cv2.CAP_GSTREAMER) + + + +#cmd = 'filesrc location=/home/thebears/local/source/reduced.mp4 ! qtdemux name=demux demux.video_0 ! queue ! h264parse ! nvv4l2decoder ! nvvidconv ! appsink' + +cmd = 'filesrc location=/home/thebears/local/source/full.mp4 ! qtdemux name=demux demux.video_0 ! queue ! h265parse ! nvv4l2decoder ! nvvidconv ! appsink sync=false' +#cmd = 'filesrc location=/home/thebears/local/source/full.mp4 ! qtdemux name=demux demux.video_0 ! h265parse ! avdec_h265 ! videoconvert ! appsink' + + +#cmd = 'videotestsrc ! autovideosink' + +cap = cv2.VideoCapture(cmd, cv2.CAP_GSTREAMER) + + +import time +st = time.time() +fr = 0 +while True: + good, frf = cap.read() + fr+=1 + print(good, fr) + if not good: + break + + +et = time.time() + +print(et-st, fr/(st-et)) +