This commit is contained in:
2025-06-10 18:10:41 -04:00
commit 914de08b49
4 changed files with 208 additions and 0 deletions

14
export_onnx_v2.py Normal file
View File

@@ -0,0 +1,14 @@
model_name = 'ViT-L-16-SigLIP2-512__webli'
from pathlib import Path
name, _, pretrained = model_name.partition("__")
config = OpenCLIPModelConfig(name, pretrained)
output_dir = model_name
visual_dir = output_dir / "visual"
textual_dir = output_dir / "textual"
to_onnx(config, opset_version, visual_dir, textual_dir, cache=cache)

28
extract_onnx.py Normal file
View File

@@ -0,0 +1,28 @@
import open_clip
#model_name = 'ViT-SO400M-14-SigLIP-384'
model_name = 'ViT-L-16-SigLIP2-512'
pretrained_name = 'webli'
model, _, preprocess = open_clip.create_model_and_transforms(model_name, pretrained=pretrained_name)
model.visual
sz_temp = (1,3,*model.visual.image_size)
import torch
r_in = torch.randn(sz_temp)
model.visual.eval()
with torch.no_grad():
torch_out = model.visual(r_in)
onnx_file_path = 'siglip2_512.onnx'
torch.onnx.export(model.visual,
r_in,
onnx_file_path,
export_params=True,
do_constant_folding=True,
input_names = ['input'],
output_names = ['output'])
#dynamic_axes={'input': {2 : 'height', 3 : 'width'}}

151
openclip.py Normal file
View File

@@ -0,0 +1,151 @@
import warnings
from dataclasses import dataclass
from functools import cached_property
from pathlib import Path
from typing import Any
from .util import get_model_path, save_config
@dataclass
class OpenCLIPModelConfig:
name: str
pretrained: str
@cached_property
def model_config(self) -> dict[str, Any]:
import open_clip
config: dict[str, Any] | None = open_clip.get_model_config(self.name)
if config is None:
raise ValueError(f"Unknown model {self.name}")
return config
@property
def image_size(self) -> int:
image_size: int = self.model_config["vision_cfg"]["image_size"]
return image_size
@property
def sequence_length(self) -> int:
context_length: int = self.model_config["text_cfg"].get("context_length", 77)
return context_length
def to_onnx(
model_cfg: OpenCLIPModelConfig,
opset_version: int,
output_dir_visual: Path | str | None = None,
output_dir_textual: Path | str | None = None,
cache: bool = True,
) -> tuple[Path | None, Path | None]:
visual_path = None
textual_path = None
if output_dir_visual is not None:
output_dir_visual = Path(output_dir_visual)
visual_path = get_model_path(output_dir_visual)
if output_dir_textual is not None:
output_dir_textual = Path(output_dir_textual)
textual_path = get_model_path(output_dir_textual)
if cache and ((textual_path is None or textual_path.exists()) and (visual_path is None or visual_path.exists())):
print(f"Models {textual_path} and {visual_path} already exist, skipping")
return visual_path, textual_path
import open_clip
import torch
from transformers import AutoTokenizer
torch.backends.mha.set_fastpath_enabled(False)
model = open_clip.create_model(
model_cfg.name,
pretrained=model_cfg.pretrained,
jit=False,
require_pretrained=True,
)
text_vision_cfg = open_clip.get_model_config(model_cfg.name)
model.eval()
for param in model.parameters():
param.requires_grad_(False)
if visual_path is not None and output_dir_visual is not None:
if not cache or not visual_path.exists():
save_config(
open_clip.get_model_preprocess_cfg(model),
output_dir_visual / "preprocess_cfg.json",
)
save_config(text_vision_cfg, output_dir_visual.parent / "config.json")
_export_image_encoder(model, model_cfg, visual_path, opset_version)
else:
print(f"Model {visual_path} already exists, skipping")
if textual_path is not None and output_dir_textual is not None:
if not cache or not textual_path.exists():
tokenizer_name = text_vision_cfg["text_cfg"].get("hf_tokenizer_name", "openai/clip-vit-base-patch32")
AutoTokenizer.from_pretrained(tokenizer_name).save_pretrained(output_dir_textual)
_export_text_encoder(model, model_cfg, textual_path, opset_version)
else:
print(f"Model {textual_path} already exists, skipping")
return visual_path, textual_path
def _export_image_encoder(
model: Any, model_cfg: OpenCLIPModelConfig, output_path: Path | str, opset_version: int
) -> None:
import torch
output_path = Path(output_path)
def encode_image(image: torch.Tensor) -> torch.Tensor:
output = model.encode_image(image, normalize=True)
assert isinstance(output, torch.Tensor)
return output
model.forward = encode_image
args = (torch.randn(1, 3, model_cfg.image_size, model_cfg.image_size),)
with warnings.catch_warnings():
warnings.simplefilter("ignore", UserWarning)
torch.onnx.export(
model,
args,
output_path.as_posix(),
input_names=["image"],
output_names=["embedding"],
opset_version=opset_version,
# dynamic_axes={"image": {0: "batch_size"}},
)
def _export_text_encoder(
model: Any, model_cfg: OpenCLIPModelConfig, output_path: Path | str, opset_version: int
) -> None:
import torch
output_path = Path(output_path)
def encode_text(text: torch.Tensor) -> torch.Tensor:
output = model.encode_text(text, normalize=True)
assert isinstance(output, torch.Tensor)
return output
model.forward = encode_text
args = (torch.ones(1, model_cfg.sequence_length, dtype=torch.int32),)
with warnings.catch_warnings():
warnings.simplefilter("ignore", UserWarning)
torch.onnx.export(
model,
args,
output_path.as_posix(),
input_names=["text"],
output_names=["embedding"],
opset_version=opset_version,
# dynamic_axes={"text": {0: "batch_size"}},
)

15
util.py Normal file
View File

@@ -0,0 +1,15 @@
import json
from pathlib import Path
from typing import Any
def get_model_path(output_dir: Path | str) -> Path:
output_dir = Path(output_dir)
output_dir.mkdir(parents=True, exist_ok=True)
return output_dir / "model.onnx"
def save_config(config: Any, output_path: Path | str) -> None:
output_path = Path(output_path)
output_path.parent.mkdir(parents=True, exist_ok=True)
json.dump(config, output_path.open("w"))